【算法题】题目:一个台阶总共有n级,如果一次可以跳1级,也可以跳2级。 求总共有多少总跳法,并分析算法的时间复杂度

一、问题描述

一个台阶总共有n级,如果一次可以跳1级,也可以跳2级。 求总共有多少总跳法,并分析算法的时间复杂度。

二、分析

如果只有1 级台阶,那显然只有一种跳法;
如果有2 级台阶,那就有两种跳的方法了:一种是分两次跳,每次跳1 级;另外一种就是一次跳2 级。

一般情况:把n 级台阶时的跳法看成是n 的函数,记为f(n)。
当n>2 时,第一次跳的时候就有两种不同的选择:
一是第一次只跳1 级,此时跳法数目等于后面剩下的n-1 级台阶的跳法数目,即为f(n-1);
另外一种选择是第一次跳2 级,此时跳法数目等于后面剩下的n-2 级台阶的跳法数目,即为f(n-2)。
因此n 级台阶时的不同跳法的总数f(n) = f(n-1) + f(n-2)。

用一个公式表示:

       /  1  (n=1)
f(n) =  2  (n=2)
       \  f(n-1) + (f-2)  (n>2)

咦,这不是Fibonacci数列吗!

时间复杂度:O(n)

三、代码

code

四、结果

result


—— 2018-11-29 ——

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值