一个台阶总共有n级,如果一次可以跳一级或者两级,求总共有多少种跳法,用任意语言代码实现

台阶问题可以转换成数学问题,即是著名的斐波那契数列。

/**
 * 我们把n级台阶时的跳法看成是n的函数, 记为f(n)
 * 当 n = 1时有1种跳法, 一次跳一阶
 * 当 n = 2时有2种跳法, 一次跳一阶, 一次跳二阶
 * 当 n > 2时, 第一次跳的时候就有两种不同的选择
 * 1): 第一次只跳1级, 此时跳法数目等于后面剩下的n-1级台阶的跳法数目, 即为f(n-1)
 * 2): 第一次跳2级, 此时跳法数目等于后面剩下的n-2级台:阶的跳法数目, 即为f(n-2)
 * 因此n级台阶时的不同跳法的总数f(n) = f(n-1) + f(n-2)
 * 因此可以将跳台阶问题转化成数学问题, 也即斐波那契数列
*/

/** 
 * 使用递归方式实现斐波那契数列
 * 此方法弊端: 时间复杂度 2^n - 1
*/
function fibonacci_1(n) {
    if (n === 1 || n === 2) {
        return 1
    } else {
        return fibonacci_1(n - 1) + fibonacci_1(n - 2)
    }
}

/** 
 * 使用普通方式实现
 * 初始构造3个数, pre, next 以及 sum
 * sum = pre + next
 * pre = next
 * next = sum
*/
function fibonacci_2(n) {
    if (n === 1 || n === 2) {
        return 1
    } else {
        let pre = 1
        let next = 1
        let sum = b
        for (let i = 2; i < n; i++) {
            sum = pre + next
            pre = next
            next = sum
        }
        return sum
    }
}

console.log('fibonacci_1', fibonacci_1(10))  // 55
console.log('fibonacci_2', fibonacci_2(10))  // 55

















评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值