# coding:utf-8
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import KernelDensity
np.random.seed(1)
N = 20
X = np.concatenate((np.random.normal(0, 1,int( 0.3 * N)),
np.random.normal(5, 1,int( 0.7 * N))))[:, np.newaxis]
X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis]
bins = np.linspace(-5, 10, 10)
fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
fig.subplots_adjust(hspace=0.05, wspace=0.05)
# 直方图 1 'Histogram'
ax[
核密度函数
本文深入探讨核密度函数(Kernel Density Estimation, KDE),解释其工作原理,介绍选择不同核函数的影响,并通过实例展示如何在数据分析中使用KDE进行概率密度估计。同时,讨论了KDE与直方图的区别及其在解决数据分布问题上的优势。"
103277196,9175024,JavaScript面向对象与原型深入解析,"['JavaScript', '面向对象', '原型', '继承']
摘要由CSDN通过智能技术生成