ASTGCN

该博客介绍了如何使用ASTGCN(Attention-based Spatio-Temporal Graph Convolutional Network)模型预测未来12小时的交通流量。模型考虑了3个关键维度的信息:流量(flow)、占用率(occupy)和速度(speed),并通过对每个特征进行独立归一化来处理数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sample = []  # [(week_sample),(day_sample),(hour_sample),target,time_sample]
sample.append(hour_sample)  # (1, vertices, features, sequences)
time_sample  # [[14]]

用当前12小时的数据预测下一12小时的数据

用到num_of_weeks, num_of_days, num_of_hours 3个维度的信息

train_x.shape
Out[8]: (10181, 307, 3, 12)
# (sequences, vertices, features, sub_sequences)

顶点信息

train_x[0,:,0,0]
Out[9]: 
array([ 62.,  56.,  90.,  32.,  19.,  68.,  24.,  24.,  31.,  31.,  90.,
        35., 124.,  36.,  27.,  37.,  68.,  91.,  75.,  71.,  30.,  21.,
        16.,  30.,  36.,  37.,  82.,  17., 120.,  72.,  60.,  14.,  97.,
        69.,  50.,  33.,  
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值