自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 DGCRN 模型网络模型详解 / DGCRN模型项目代码详解 (3) —— net.py

动态图卷积循环网络DGCRN是一个在seq2seq架构下,以循环神经网络RNN为框架的时空预测模型。模型中使用图卷积GCN来获取空间相关性,使用RNN来获取时间相关性,以此实现交通路网的时空特征学习与预测。本文以代码的视角实现了论文公式与代码的一一对应,同时以通俗易懂的语言与示例帮助读者理解项目代码,适合初学者学习。

2024-12-17 12:04:23 1454

原创 DGCRN模型项目代码详解 (2) —— layer.py

动态图卷积循环网络DGCRN是一个在seq2seq架构下,以循环神经网络RNN为框架的时空预测模型。本文重点讲解了DGCRN开源项目中layer.py文件中函数与类的实现方法,实现代码与论文公式的一一对应,适合初学者学习。

2024-12-12 18:08:25 1010

原创 DGCRN模型项目代码详解 (1) —— util.py

动态图卷积循环网络DGCRN是一个在seq2seq架构下,以循环神经网络RNN为框架的时空预测模型。本文重点讲解了DGCRN开源项目中uitl.py文件中函数与类的实现方法,适合初学者学习。

2024-12-12 16:27:59 1067

原创 DGCRN模型数学原理及运算过程详解

动态图卷积循环网络DGCRN是一个在seq2seq架构下,以循环神经网络RNN为框架的时空预测模型。模型中使用图卷积GCN来获取空间相关性,使用RNN来获取时间相关性,以此实现交通路网的时空特征学习与预测。本文细致的解释了论文中公式的用法以及部分方法的数学原理实现,适合初学者学习。

2024-12-10 21:30:46 2070

原创 GAT模型数学原理与代码详解(pytorch)

本文详细阐述了图注意力网络(GAT)中注意力机制的实现过程,采用示意图、代码、公式结合的方式加以示例教学,适合初学者学习。同时本文就GCN于GAT的异同进行了简短的讨论。

2024-11-17 14:33:18 1320

原创 STSGCN模型论文与代码详解 (pytorch)(网络模型部分)

这是一份用于STSGCN模型理解的入门教程,该模型适用于交通特征预测与其他多种图结构问题。本文详细展示并解析了pytorch版本STSGCN模型的网络模型代码,适合初学者阅读学习。

2024-10-20 20:23:39 1328

原创 ASTGCN模型数学原理与代码详解(网络模型部分)

这是一份用于ASTGCN模型理解的入门教程,将以代码的视角附带简单易懂的示例来阐述模型中空间与时间注意力机制的实现过程,并梳理模型框架与图神经网络的卷积运算过程。ASTGCN在时间序列预测上具有良好的性能,是研究图数据预测问题的重要基础模型,值得每一个深度学习入门玩家学习。

2024-09-29 00:57:37 3999 1

原创 GCN的基础入门及数学原理

一个入门图卷积神经网络的基础攻略,主要介绍了图卷积网络(Graph Convolutional Network,GCN)的数学原理,包括卷积的基本概念、特征值与特征向量的理解,拉普拉斯矩阵重要性质的证明以及GCN卷积的实现方法。(本文不包含pytorch代码讲解,仅仅从数学原理的角度出发阐述什么是“图卷积”)

2024-09-23 21:47:20 2624 1

Runcorder - 跑步训练管理系统

# Runcorder - 跑步训练管理系统 Runcorder 是一款专为跑步爱好者、马拉松运动员及高校体育生设计的本地化跑步训练管理工具,基于 Python 开发,结合 Tkinter 图形界面与强大的数据处理能力,为用户提供从训练记录到数据分析的全方位支持。无论是初学者还是专业跑者,Runcorder 都能帮助你科学规划训练、精准追踪进度,并通过可视化图表直观呈现训练成果,让你的跑步训练更智能、更高效! - **多用户管理**:支持创建、加载和删除用户档案,每个用户的数据独立存储,确保隐私与安全。 - **科学训练记录**:全维度记录跑步数据,包括日期、里程、配速、自评和晨跑标记,支持智能输入校验,避免数据错误。 - **多维数据分析**:通过动态可视化图表展示跑步里程趋势、平均配速曲线,支持自定义 Y 轴范围,帮助用户深入理解训练效果。 - **高阶功能**:提供 4 种科学训练模式(有氧/无氧/混合),支持历史记录修改与删除,数据以 JSON 格式持久化存储,跨平台兼容。

2025-03-09

DGCRN模型实现过程详解

内容概要:本文详细介绍了一种用于城市交通流预测的深度学习模型——动态图卷积循环网络(DGCRN)。该模型不仅考虑到了城市交通系统的空间特性,还结合时间动态性提出了新的方法,即基于现有邻接矩阵和动态交通状态,采用改进版 GRU 结构来捕捉动态图形的长期依赖关系。具体内容包括节点嵌入的生成、动态邻接矩阵的创建、静态与动态卷积信息的融合等方面。此外,文章指出了该模型的主要贡献在于引入图的动态性和RNN框架。 适合人群:从事智慧城市交通系统研究的专业人员、计算机科学领域的研究生及高年级本科生,尤其是对交通流预测感兴趣的研究者。 使用场景及目标:针对大规模城市区域内的交通流数据分析,如道路拥挤度、事故频发地段监测等实际应用场景提供有效的解决方案;同时,对于机器学习、图论等领域内的学术研究也有重要价值。 其他说明:虽然文中提及了许多技术细节,但对于不具备深厚数学背景的读者而言可能会感到难以理解。建议此类读者先从简单的概念入手,并借助配套实验资料逐步深入探索。

2024-12-10

STSGCN-pytorch-修改版.zip

该模型为论文:Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting,中的图卷积神经网络模型。由于原作者使用mxnet框架完成网络搭建,为了更好适配pytorch使用人群,故参考github相关开源代码完成pytorch版本的STSGCN项目,方便初学者学习。

2024-10-20

ASTGCN完整项目(修改版)

作者基于GitHub开源的ASTGCN代码进行项目重新编排,使其变为简单易懂的格式,适合初学者学习。

2024-09-29

GCN的基础入门及数学原理PDF

一个入门图卷积神经网络的基础攻略,主要介绍了图卷积网络(Graph Convolutional Network,GCN)的数学原理,包括卷积的基本概念、特征值与特征向量的理解,拉普拉斯矩阵重要性质的证明以及GCN卷积的实现方法。(本文不包含pytorch代码讲解,仅仅从数学原理的角度出发阐述什么是“图卷积”)

2024-09-23

跟驰模型.py

跟驰模型.py

2022-10-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除