OJ链接: 历届试题 国王的烦恼
问题描述
C国由n个小岛组成,为了方便小岛之间联络,C国在小岛间建立了m座大桥,每座大桥连接两座小岛。两个小岛间可能存在多座桥连接。然而,由于海水冲刷,有一些大桥面临着不能使用的危险。
如果两个小岛间的所有大桥都不能使用,则这两座小岛就不能直接到达了。然而,只要这两座小岛的居民能通过其他的桥或者其他的小岛互相到达,他们就会安然无事。但是,如果前一天两个小岛之间还有方法可以到达,后一天却不能到达了,居民们就会一起抗议。
现在C国的国王已经知道了每座桥能使用的天数,超过这个天数就不能使用了。现在他想知道居民们会有多少天进行抗议。
输入格式
输入的第一行包含两个整数n, m,分别表示小岛的个数和桥的数量。
接下来m行,每行三个整数a, b, t,分别表示该座桥连接a号和b号两个小岛,能使用t天。小岛的编号从1开始递增。
输出格式
输出一个整数,表示居民们会抗议的天数。
样例输入
4 4
1 2 2
1 3 2
2 3 1
3 4 3
样例输出
2
样例说明
第一天后2和3之间的桥不能使用,不影响。
第二天后1和2之间,以及1和3之间的桥不能使用,居民们会抗议。
第三天后3和4之间的桥不能使用,居民们会抗议。
数据规模和约定
对于30%的数据,1<=n<=20,1<=m<=100;
对于50%的数据,1<=n<=500,1<=m<=10000;
对于100%的数据,1<=n<=10000,1<=m<=100000,1<=a, b<=n, 1<=t<=100000。
- 思路
经过一番观察后,可以看出是并查集。不过要倒过来想,题目是断桥
,做题要修桥
。
把题中的天数
存在一个递减排列的set中,自带递减和去重:
set<int,greater<int> > Day;//将天数从大到小排序
然后把某天的桥的数据,存在一个由对组
构成的向量
中:
#define P pair<int,int>
vector<P > ps[100010]; //某一天的所有桥
对于天数,从大到小遍历,判断每天进行了修桥
操作后连通块的数目是否减少。开始我很麻瓜,想对N个结点进行遍历,但是一算复杂度为1e9
,稳妥超时。经过一番冷静思考,领悟了原来只要每次修桥
判断一下a 、b两个结点是否属于一个联通块就可以了。
- 代码
#include <bits/stdc++.h>
#define I scanf
#define OL puts
#define O printf
#define F(a,b,c) for(a=b;a<c;a++)
#define FF(a,b) for(a=0;a<b;a++)
#define FG(a,b) for(a=b-1;a>=0;a--)
#define LEN 1000010
#define MAX 0x06FFFFFF
#define V vector<int>
#define P pair<int,int>
using namespace std;
int fa[LEN];
void init(){
int i;
FF(i,LEN) fa[i]=i;
}
int getFa(int x){
if(fa[x]==x) return x;
int r=x; //返回的祖先结点
while(fa[r]!=r) r=fa[r];//不断回溯
int t=x; //临时变量
//路径压缩
while(fa[x]!=x){
t=fa[x];//上一个结点
fa[x] =r;
x=t;
}
return r;
}
void Union(int a,int b){
int faA=getFa(a);
int faB=getFa(b);
if(faA==faB) return;
fa[faA]=faB;
}
set<int,greater<int> > Day;//将天数从大到小排序
vector<P > ps[100010]; //某一天的所有桥
int main(){
// freopen("国王的烦恼.txt","r",stdin);
int M,N,i,a,b,t,faA,faB;
init();
I("%d%d",&N,&M);
FF(i,M){
I("%d%d%d",&a,&b,&t);
ps[t].push_back(P(a,b));
Day.insert(t);
}
set<int>::iterator it=Day.begin();
int ans=0;
while(it!=Day.end()){
vector<P > & bgs=ps[*it]; //获取这一天的所有桥的数据
int sz= bgs.size();
bool ky=0;
FF(i,sz){
a=bgs[i].first;
b=bgs[i].second;
faA=getFa(a);
faB=getFa(b);
if(faA!=faB){
ky=1;
fa[faA]=faB;
}
}
if(ky) ans++;
it++;
}
O("%d\n",ans);
return 0;
}