BZOJ 1050 最小生成树

  这道题的意思是给定一张图,求所有从s到t的路径中最大边与最小边的比值的最小值。首先对于确定的一个最小边,我们想让比值最小,就需要让最大边最小,容易想到求最小生成树,先将边按边权从小到大排序,然后枚举最小边,再用并查集维护,当s与t在同一个连通块里时,记录当前最大边,更新答案。还有一个问题是枚举的最小边不一定在s到t的路径中,不过这是没有问题的,假设i是s到t路径中的最小值,j在i前面,j是我们当前枚举的最小值,可以知道从i和j枚举最终最大边都会是k,而v[i]>v[j],因此i的答案会更新掉j的答案,这样就保证了答案的正确性

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 50000
struct edge
{
	int fr,to,v;	
}e[maxn];
int n,m,s,t,ans1,ans2,temp1,temp2,father[maxn];
double ans=1e9;

int gcd(int x,int y)
{
	if (y==0) return x;
	return gcd(y,x%y);	
}

int getfather(int x)
{
	if (x!=father[x]) father[x]=getfather(father[x]);
	return father[x];	
}

bool cmp(edge a,edge b)
{
	return a.v<b.v;	
}

int main()
{
	scanf("%d%d",&n,&m);
	for (int i=1;i<=m;i++) 
		scanf("%d%d%d",&e[i].fr,&e[i].to,&e[i].v);
	sort(e+1,e+m+1,cmp);
	scanf("%d%d",&s,&t);
	for (int i=1;i<=m;i++) 
	{
		for (int j=1;j<=n;j++) father[j]=j;
		temp1=e[i].v;
		for (int j=i;j<=m;j++) 	
		{
			int x=e[j].fr;
			int y=e[j].to;
			x=getfather(x);
			y=getfather(y);
			if (x==y) continue;
			father[x]=y;
			if (getfather(s)==getfather(t)) 
			{
				temp2=e[j].v;
				double p=(double)temp2/temp1;
				if (p<ans) 
				{
					ans=p;	
					ans1=temp1;
					ans2=temp2;
				}
				break;
			}
		}
	}
	if (ans2==0) 
	{
		printf("IMPOSSIBLE\n");
		return 0;
	}
	int k=gcd(ans1,ans2);
	if (k==ans1) printf("%d\n",ans2/ans1);
	else 
	{
		ans1/=k;ans2/=k;
		printf("%d/%d\n",ans2,ans1);
	}
	return 0;	
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值