斐波那契数列是一个递推式很简单的数列,f[i]=f[i-1]+f[i-2],f[0]=0,f[1]=1,但是经常在OI中考到,这里简述它的一些性质。
1:通项公式,自己百度,由这个通项公式我们有一个结论,即分母不超过n的最接近黄金分割比的分数的分子和分母是斐波那契数列相邻两项。
2:在模意义下,斐波那契数列会出现循环,对于循环我们可以打表找出来。
3:对于斐波那契数列有gcd(f[i],f[j])=f[gcd(i,j)]。
4:奇数项求和:f[1]+f[3]+...+f[2n-1]=f[2n]-f[2]+f[1],偶数项求和:f[2]+f[4]+...+f[2n]=f[2n+1]-f[1]。平方项求和:f[1]^2+f[2]^2+.....f[n]^2=f[n]*f[n+1]。