关于斐波那契数列的性质及其应用

     斐波那契数列是一个递推式很简单的数列,f[i]=f[i-1]+f[i-2],f[0]=0,f[1]=1,但是经常在OI中考到,这里简述它的一些性质。

    1:通项公式,自己百度,由这个通项公式我们有一个结论,即分母不超过n的最接近黄金分割比的分数的分子和分母是斐波那契数列相邻两项。

    2:在模意义下,斐波那契数列会出现循环,对于循环我们可以打表找出来。

    3:对于斐波那契数列有gcd(f[i],f[j])=f[gcd(i,j)]。

    4:奇数项求和:f[1]+f[3]+...+f[2n-1]=f[2n]-f[2]+f[1],偶数项求和:f[2]+f[4]+...+f[2n]=f[2n+1]-f[1]。平方项求和:f[1]^2+f[2]^2+.....f[n]^2=f[n]*f[n+1]。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值