作业:16数据结构哈夫曼树

提示:该Blog仅为完成作业,大佬请绕路


老师某学生的代码


#include <iostream>
#include <fstream>
#include <string.h>
using namespace std; 

#define MaxSize 1024  // 读入文件的上限 
#define OK 1
#define ERROR 0
typedef int Status;

typedef struct wordcnt{  // 统计字符和对应的次数 
	char ch;
	int cnt = 0;
}Count;

typedef struct NumCount{  // 统计次数的外部封装 
	Count count[MaxSize];
	int length = 0;
}NumCount;

typedef struct HTree{  // 哈夫曼树结构 
	char data; 
	int weight;
	int parent,lchild,rchild;
}HTNode,*HuffmanTree; 

typedef struct HCode{ // 编码结构 
	char data;
	char* str; 
}*HuffmanCode;


Status ReadData(char *source);  // 读入文件 
Status WordCount(char *data,NumCount *paraCnt); // 统计次数 
Status Show(NumCount *paraCnt);   // 展示次数 
Status CreateHuffmanTree(HuffmanTree &HT,int length,NumCount cntarray);  // 创建哈夫曼树 
Status select(HuffmanTree HT,int top,int *s1,int *s2);  // 选择权重最小的两个节点 
Status CreateHuffmanCode(HuffmanTree HT,HuffmanCode &HC,int length);  // 创建哈夫曼编码 
Status Encode(char *data,HuffmanCode HC,int length);  // 将读入的文件编码,写到txt文件 
Status Decode(HuffmanTree HT,int length);  //读入编码文件,解码 

int main(int argc, char** argv) {
	char data[MaxSize];  
	NumCount Cntarray;
	ReadData(data);  // 读入数据 
	WordCount(data,&Cntarray);  // 统计次数 
//	Show(&Cntarray); //可以查看每个单词出现的对应次数 
	HuffmanTree tree;
	CreateHuffmanTree(tree,Cntarray.length,Cntarray);  // 建树 
	HuffmanCode code;  
	CreateHuffmanCode(tree,code,Cntarray.length);  // 创建编码 
	Encode(data,code,Cntarray.length);  // 生成编码文件 
	Decode(tree,Cntarray.length);  // 解码 
	cout<<"Please view the generated TXT file to check the result"<<endl; 
	return 0;
}

Status ReadData(char *source)
{
	//打开文件读入数据 
	ifstream infile;
	infile.open("in.txt");
	cout<<"Reading..."<<endl;
	cout<<"the input file is:"<<endl;
	infile.getline(source,MaxSize);
	cout<<source<<endl;
	infile.close();
	cout<<endl;
	return OK;
}

Status WordCount(char *data,NumCount *paraCnt)
{
	int flag;// 标识是否已经记录 
	int len = strlen(data);
	for(int i = 0;i < len;++i)
	{
		flag = 0;
		for(int j = 0;j < paraCnt->length;++j)
		{
			if(paraCnt->count[j].ch == data[i]) // 若已有记录,直接++ 
			{
				++paraCnt->count[j].cnt;
				flag = 1;
				break;
			}
			
		}
		if(!flag) // 没有记录,则新增 
		{
			paraCnt->count[paraCnt->length].ch = data[i];
			++paraCnt->count[paraCnt->length].cnt;
			++paraCnt->length;
		}
	}
	return OK;
}

Status Show(NumCount *paraCnt)
{
	cout<<"the length is "<<paraCnt->length<<endl;
	for(int i = 0;i < paraCnt->length;++i)
	{
		cout<<"The character "<<paraCnt->count[i].ch<<"  appears  "<<paraCnt->count[i].cnt<<endl;
	}
	cout<<endl;
	return OK;
}

Status CreateHuffmanTree(HuffmanTree &HT,int length,NumCount cntarray)
{
	if(length <= 1) return ERROR;
	int s1,s2;
	int m = length*2-1;  // 没有度为1的节点,则总结点是2*叶子节点数-1个 
	HT = new HTNode[m+1];
	for(int i = 1;i <= m;++i)  // 初始化 
	{
		HT[i].parent = 0;
		HT[i].lchild = 0;
		HT[i].rchild = 0;
	}
	
	for(int i = 1;i <= length;++i) 
	{
		HT[i].data = cntarray.count[i-1].ch;
		HT[i].weight = cntarray.count[i-1].cnt;
	}
	
	for(int i = length + 1;i <= m;++i)
	{
		select(HT,i-1,&s1,&s2);  // 从前面的范围里选择权重最小的两个节点 
		HT[s1].parent = i;
		HT[s2].parent = i;
		HT[i].lchild = s1;
		HT[i].rchild = s2;
		HT[i].weight = HT[s1].weight + HT[s2].weight;  // 得到一个新节点 
	}
	return OK;
}

Status select(HuffmanTree HT,int top,int *s1,int *s2)
{
	int min = INT_MAX;
	for(int i = 1;i <= top;++i)  // 选择没有双亲的节点中,权重最小的节点 
	{
		if(HT[i].weight < min && HT[i].parent == 0)
		{
			min = HT[i].weight;
			*s1 = i;
		}
	}
	
	min = INT_MAX;
	for(int i = 1;i <= top;++i)  // 选择没有双亲的节点中,权重次小的节点 
	{
		if(HT[i].weight < min && i != *s1 && HT[i].parent == 0)
		{
			min = HT[i].weight;
			*s2 = i;
		}
	}
	return OK;	
}

Status CreateHuffmanCode(HuffmanTree HT,HuffmanCode &HC,int length)
{
	HC = new HCode[length+1];
	char *cd = new char[length];  // 存储编码的临时空间 
	cd[length-1] = '\0';  // 方便之后调用strcpy函数 
	int c,f,start;
	for(int i = 1;i <= length;++i)
	{
		start = length-1;  // start表示编码在临时空间内的起始下标,由于是从叶子节点回溯,所以是从最后开始 
		c = i;
		f = HT[c].parent;
		while(f != 0)
		{
			--start;  // 由于是回溯,所以从临时空间的最后往回计 
			if(HT[f].lchild == c)
				cd[start] = '0';
			else 
				cd[start] = '1';
			c = f;
			f = HT[c].parent;
		}
		HC[i].str = new char[length-start];  // 最后,实际使用的编码空间大小是length-start 
		HC[i].data = HT[i].data;
		strcpy(HC[i].str,&cd[start]);  // 从实际起始地址开始,拷贝到编码结构中 
	}
	delete cd;
}

Status Encode(char *data,HuffmanCode HC,int length)
{
	ofstream outfile;
	outfile.open("code.txt");
	for(int i = 0;i < strlen(data);++i)  // 依次读入数据,查找对应的编码,写入编码文件 
	{
		for(int j = 1;j <= length;++j)
		{
			if(data[i] == HC[j].data)
			{
				outfile<<HC[j].str;
			}
		}
	}
	outfile.close();
	cout<<"the code txt has been written"<<endl;
	cout<<endl;
	return OK;
}

Status Decode(HuffmanTree HT,int length)
{
	char codetxt[MaxSize*length];
	ifstream infile;
	infile.open("code.txt");
	infile.getline(codetxt,MaxSize*length);
	infile.close();
	
	ofstream outfile;
   	outfile.open("out.txt");
	
	int root = 2*length-1;  // 从根节点开始遍历 
	for(int i = 0;i < strlen(codetxt);++i)
	{
		if(codetxt[i] == '0') root = HT[root].lchild;  //为0表示向左遍历 
		else if(codetxt[i] == '1') root = HT[root].rchild; //为1表示向右遍历 
		if(HT[root].lchild == 0 && HT[root].rchild == 0)  // 如果已经是叶子节点,输出到输出文件中,然后重新回到根节点 
		{
			outfile<<HT[root].data;
			root = 2*length-1;
		}
	}
	outfile.close();
	cout<<"the output txt has been written"<<endl;
	cout<<endl;
	return OK;
}


我的代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef double DataType; //结点权值的数据类型

typedef struct HTNode //单个结点的信息
{
	DataType weight; //权值
	int parent; //父节点
	int lc, rc; //左右孩子
}*HuffmanTree;

typedef char **HuffmanCode; //字符指针数组中存储的元素类型

//在下标为1到i-1的范围找到权值最小的两个值的下标,其中s1的权值小于s2的权值
void Select(HuffmanTree& HT, int n, int& s1, int& s2)
{
	int min;
	//找第一个最小值
	for (int i = 1; i <= n; i++)
	{
		if (HT[i].parent == 0)
		{
			min = i;
			break;
		}
	}
	for (int i = min + 1; i <= n; i++)
	{
		if (HT[i].parent == 0 && HT[i].weight < HT[min].weight)
			min = i;
	}
	s1 = min; //第一个最小值给s1
	//找第二个最小值
	for (int i = 1; i <= n; i++)
	{
		if (HT[i].parent == 0 && i != s1)
		{
			min = i;
			break;
		}
	}
	for (int i = min + 1; i <= n; i++)
	{
		if (HT[i].parent == 0 && HT[i].weight < HT[min].weight&&i != s1)
			min = i;
	}
	s2 = min; //第二个最小值给s2
}

//构建哈夫曼树
void CreateHuff(HuffmanTree& HT, DataType* w, int n)
{
	int m = 2 * n - 1; //哈夫曼树总结点数
	HT = (HuffmanTree)calloc(m + 1, sizeof(HTNode)); //开m+1个HTNode,因为下标为0的HTNode不存储数据
	for (int i = 1; i <= n; i++)
	{
		HT[i].weight = w[i - 1]; //赋权值给n个叶子结点
	}
	for (int i = n + 1; i <= m; i++) //构建哈夫曼树
	{
		//选择权值最小的s1和s2,生成它们的父结点
		int s1, s2;
		Select(HT, i - 1, s1, s2); //在下标为1到i-1的范围找到权值最小的两个值的下标,其中s1的权值小于s2的权值
		HT[i].weight = HT[s1].weight + HT[s2].weight; //i的权重是s1和s2的权重之和
		HT[s1].parent = i; //s1的父亲是i
		HT[s2].parent = i; //s2的父亲是i
		HT[i].lc = s1; //左孩子是s1
		HT[i].rc = s2; //右孩子是s2
	}
	//打印哈夫曼树中各结点之间的关系
	printf("哈夫曼树为:>\n");
	printf("下标   权值     父结点   左孩子   右孩子\n");
	printf("0                                  \n");
	for (int i = 1; i <= m; i++)
	{
		printf("%-4d   %-6.2lf   %-6d   %-6d   %-6d\n", i, HT[i].weight, HT[i].parent, HT[i].lc, HT[i].rc);
	}
	printf("\n");
}

//生成哈夫曼编码
void HuffCoding(HuffmanTree& HT, HuffmanCode& HC, int n)
{
	HC = (HuffmanCode)malloc(sizeof(char*)*(n + 1)); //开n+1个空间,因为下标为0的空间不用
	char* code = (char*)malloc(sizeof(char)*n); //辅助空间,编码最长为n(最长时,前n-1个用于存储数据,最后1个用于存放'\0')
	code[n - 1] = '\0'; //辅助空间最后一个位置为'\0'
	for (int i = 1; i <= n; i++)
	{
		int start = n - 1; //每次生成数据的哈夫曼编码之前,先将start指针指向'\0'
		int c = i; //正在进行的第i个数据的编码
		int p = HT[c].parent; //找到该数据的父结点
		while (p) //直到父结点为0,即父结点为根结点时,停止
		{
			if (HT[p].lc == c) //如果该结点是其父结点的左孩子,则编码为0,否则为1
				code[--start] = '0';
			else
				code[--start] = '1';
			c = p; //继续往上进行编码
			p = HT[c].parent; //c的父结点
		}
		HC[i] = (char*)malloc(sizeof(char)*(n - start)); //开辟用于存储编码的内存空间
		strcpy(HC[i], &code[start]); //将编码拷贝到字符指针数组中的相应位置
	}
	free(code); //释放辅助空间
}

//主函数
int main()
{
	int n = 0;
	printf("请输入数据个数:>");
	scanf("%d", &n);
	DataType* w = (DataType*)malloc(sizeof(DataType)*n);
	if (w == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}
	printf("请输入数据:>");
	for (int i = 0; i < n; i++)
	{
		scanf("%lf", &w[i]);
	}
	HuffmanTree HT;
	CreateHuff(HT, w, n); //构建哈夫曼树

	HuffmanCode HC;
	HuffCoding(HT, HC, n); //构建哈夫曼编码

	for (int i = 1; i <= n; i++) //打印哈夫曼编码
	{
		printf("数据%.2lf的编码为:%s\n", HT[i].weight, HC[i]);
	}
	free(w);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值