- 博客(227)
- 收藏
- 关注
原创 sklearn.metrics.roc_auc报错ValueError: unknown format is not supported
sklearn.metrics.roc_auc报错ValueError: unknown format is not supported。
2022-12-07 11:04:03
2442
2
翻译 UNeXt: MLP-based Rapid Medical Image Segmentation Network
我们以一种有效的方式设计了UNeXt,其中具有早期卷积阶段和潜在阶段的MLP阶段。我们提出了一个tokenized的MLP块,其中我们有效地对卷积特征进行标记和投影,并使用MLP对表示进行建模。为了进一步提高性能,我们建议在输入到MLP的同时转移输入的通道,以便专注于学习本地依赖性。在潜空间中使用标记化的MLP减少了参数的数量和计算复杂性,同时能够产生更好的表示形式来帮助分割。网络还包括各级编码器和解码器之间的跳过连接
2022-09-29 11:51:12
2525
1
翻译 ResGANet: Residual group attention network for medical image classification and segmentation
本文提出了一种模块化的组注意块,可以在两个独立的维度:通道和空间中捕获医学图像中的特征依赖关系。通过以 ResNet 样式堆叠这些组注意块,我们获得了一个新的 ResNet 变体,称为 ResGANet
2022-09-26 17:21:39
2682
翻译 Boundary-aware Context Neural Network for Medical Image Segmentation
在本文中,我们为二维医学图像分割制定了边界感知上下文神经网络(BA-Net),以捕获更丰富的上下文并保留精细的空间信息。 BA-Net 采用编解码器架构。在编码器网络的每个阶段,首先提出了金字塔边缘提取模块来获取多粒度的边缘信息。然后我们设计了一个小型多任务学习模块,用于联合学习分割对象掩码和检测病变边界。特别是,提出了一种新的交互式注意力来桥接两个任务,以实现不同任务之间的信息互补,有效地利用边界信息为更好的分割预测提供强有力的线索。最后,交叉特征融合模块旨在选择性地聚合来自整个编码器网络的多级特征。
2022-09-26 11:43:50
1417
翻译 IRUNet for medical image segmentation
我们提出了一种改进的基于 UNet 的架构来分割患者组织样本的显微图像。所提出的模型称为 IRUNet,它利用了跳跃连接中的初始块和残差块,并结合了多尺度特征,以便提取更好的分割特征。此外,为了在编码器部分提取强大的表示,已经使用了几个卷积网络作为主干,并研究了它们对分割结果的影响。
2022-09-25 16:50:03
614
翻译 Multi-organ segmentation network for abdominal CT images based on spatial attention and deformable c
该模型具有可变形的感受野,并利用器官在位置和大小方面的结构来减少复杂背景的干扰,使其成为一种高效且准确的分割方法。提出了一个空间注意块,通过显式外部监督学习空间注意图,在特征提取过程中突出感兴趣的器官区域。此外,设置了一个可变形的卷积块,通过额外的可训练偏移量为不同器官产生合理的感受野,从而处理形状和大小的变化。此外,通过使用多尺度注意力图和高级语义信息改进了 U-Net 的跳跃连接结构。
2022-09-21 21:28:25
1051
1
翻译 Head and neck multi-organ segmentation on dual-energy CT using dual pyramid convolutional neural net
提出了一个mask scoring regional convolutional neural network (R-CNN), 其中首先从两个独立的金字塔网络中学习综合特征,并且是然后通过深度注意力策略结合起来,突出从低能量和高能量CT两个通道中提取的信息。为了执行多器官分割并避免错误分类,将掩码评分子网络集成到 MaskR-CNN 框架中,以建立潜在检测器官的感兴趣区域 (ROI) 类别与该器官在该 ROI 内的分割形状之间的相关性
2022-09-11 21:37:50
908
翻译 Clinically applicable deep learning framework for organs at risk delineation in CT images
我们提出了一个深度学习模型来自动描绘头部和颈部的 OAR,该模型在 215 个计算机断层扫描数据集上进行训练,其中 28 个 OAR 由经验丰富的放射肿瘤学家手动描绘。在包含 100 次计算机断层扫描的保留数据集上,我们的模型在 28 个 OAR 中实现了 78.34% 的平均 Dice 相似性系数,分别显著优于人类专家和之前的最先进方法 10.05% 和 5.18%。我们的模型只需几秒钟即可描绘出整个扫描,而人类专家则需要半个多小时。这些发现证明了深度学习在提高放射治疗质量和减少治疗计划时间方面的潜力。.
2022-08-31 21:00:02
498
翻译 w-net: Dual supervised medical image segmentation with multi-dimensional self-attention and diversel
在 U-Net 中加入了一个额外的扩展路径,以导入额外的监督信号,并通过双重监督获得更有效和鲁棒的图像分割。然后,进一步开发了一种多维自注意力机制,以突出显著特征并在空间和通道维度上连续抑制不相关的特征。最后,为了减少收缩路径和扩展路径的特征图之间的语义差异,我们进一步建议将不同连接的多尺度卷积块集成到跳跃连接中,其中几个多尺度卷积操作串联和并行连接......
2022-08-14 11:46:40
3940
4
翻译 Self-attention neural architecture search for semantic image segmentation
本文研究了所有可能维度 {H,W, C,HW, HC, CW, HWC} 的自注意力。然后探索所有可能的 self-attention 的聚合。应用神经架构搜索(NAS)技术来实现最佳聚合。具体来说,精心设计(1)搜索空间和(2)优化方法。对于(1),引入了一个构建块,一个基本的自注意力搜索单元(BSU),它可以对所有维度的自注意力进行建模。并且搜索空间包含in-BSU 和crossBSU 操作。此外,提出了一种注意力图分割方法,可以将计算量减少 1/3。对于(2),应用一种有效的可微优化方法来搜索最优聚合
2022-07-27 18:58:07
636
翻译 Prior Attention Enhanced Convolutional Neural Network Based Automatic Segmentation of Organs at Risk
为了在头颈部 (H&N) 癌症放射治疗中自动分割风险器官 (OAR),我们在全尺寸计算机断层扫描(CT) 图像上开发了一种新的基于先验注意增强卷积神经网络 (PANet) 的逐步细化分割框架 (SRSF)。SRSF 采用多尺度分割概念构建,其中 OAR 从粗到细进行分割。 PANet 是一种金字塔结构,具有初始块和优先注意的元素。在本研究中,开发的基于 PANet 的 SRSF 应用于 H&N 放射治疗中的 OAR 分割。...
2022-07-25 17:14:51
676
翻译 More accurate and efficient segmentation of organs-at-risk in radiotherapy with Convolutional Neural
CNN Cascades 是一种两步从粗到细的方法,由简单区域检测器 (SRD) 和精细分割单元 (FSU) 组成。 SRD首先使用相对浅的网络来定义器官所在的感兴趣区域(ROI),然后FSU将较小的ROI作为输入,并采用深度网络进行精细分割。本研究使用了 100 名具有分割的头颈部患者的成像数据(14,651 个切片)。将性能与最先进的单个 CNN 在准确性方面与 Dice 相似系数 (DSC) 和 Hausdorff 距离 (HD) 值的度量进行了比较。...
2022-07-24 21:22:08
369
翻译 Optimising a 3D convolutional neural network for head and neck computed tomography segmentation with
我们定制的 CNN 架构的元素各不相同,以优化分割性能。我们测试并评估了以下影响:==在特定软组织和骨骼解剖窗口处为 CT 扫描输入使用多个对比通道,调整大小与转置卷积,以及基于重叠度量和不同组合的交叉熵的损失函数==。使用第 95 个百分位 Hausdorff 距离和平均协议距离 (mDTA) 将模型分割性能与两位医生的黄金标准分割的观察者间偏差进行比较。在流行的公共数据集上进一步验证了性能最佳的配置,以与最先进的 (SOTA) 自动分割方法进行比较。...
2022-07-22 22:56:09
643
1
翻译 Training of head and neck segmentation networks with shape prior on small datasets
头颈部的癌症通常用放射治疗。 低风险治疗的一个关键步骤是在规划图像中准确地描绘有风险的器官。 深度学习在图像分割中的成功导致自动算法在特定的数据集上实现人类专家的性能。 然而,这种算法需要大量的数据集进行训练,并且无法分割以前未见的病理,而人类专家仍然能够成功。 由于病理学是罕见的,并且生成大量数据集的成本很高,我们研究了减少训练数据、批量大小和引入先验知识的影响。 .........
2022-07-20 15:01:26
455
翻译 TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation
在本文中,我们提出了 TransUNet,它兼具 Transformer 和 U-Net,作为医学图像分割的强大替代方案。一方面,Transformer 将来自卷积神经网络 (CNN) 特征映射的标记化图像块编码为用于提取全局上下文的输入序列。另一方面,解码器对编码特征进行上采样,然后将其与高分辨率 CNN 特征图相结合,以实现精确定位。...
2022-07-18 18:57:40
2981
1
翻译 Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medi
Unified Focal loss: Generalising Dice and cross entropy-based losses tohandle class imbalanced medical image segmentation发表期刊:Computerized Medical Imaging and Graphics’发表时间:2022年
2022-07-05 16:45:23
1619
1
翻译 DR-Net: dual-rotation network with feature map enhancement for medical image segmentation
DR-Net: dual-rotation network with feature map enhancement for medical image segmentation发表期刊: Complex&Intelligent System(大类:计算机科学2区发表时间: 2022年
2022-07-04 19:43:01
1111
翻译 Learning multi-level structural information for small organ segmentation
Learning multi-level structural information for small organ segmentation发表期刊:Signal Processing(工程技术2区)发表时间:2022年
2022-07-02 11:05:26
1550
原创 Reverse Attention for Salient Object Detection
Reverse Attention for Salient Object Detection2018ECCVAbstract得益于深度学习技术的快速发展,显著目标检测最近取得了显著进展。然而,仍然存在以下两个主要挑战阻碍其在嵌入式设备中的应用,低分辨率输出和沉重的模型权重。为此,本文提出了一个准确但紧凑的深度网络,用于高效的显著目标检测。更具体地说,给定最深层的粗略显著性预测,我们首先采用残差学习来学习侧输出残差特征以进行显著性细化,这可以在保持准确性的情况下使用非常有限的卷积参数来实现。其次,我们进
2022-05-19 16:41:05
1732
原创 Lite Transformer with Long-Short range attention
Lite Transformer with Long-Short range attention2020年 arxiv文章AbstractTransformer在自然语言处理(例如机器翻译、问答)中变得无所不在;然而,它需要大量的计算来实现高性能,这使得它不适合受到硬件资源和电池严格限制的移动应用。本文提出了一种高效的移动NLP体系结构——Lite Transformer,以方便在边缘设备上部署移动NLP应用。关键的原语是长短距离注意 (LSRA),其中一组头部专用于局部上下文建模(通过卷积),
2022-05-05 11:46:00
2930
原创 torch.argmax函数dim=None应用于高维矩阵的理解
在深度学习模型中经常会用到torch.argmax函数,网上对它的讲解多是针对指定dim参数的情况。但是最近遇到了一个dim=None的情况,不是很理解,查了半天也没找到相关的解释。自己写了个例子试了一下,大概理解了,记录一下,做个备忘。import torch# 随机生成一个4维矩阵a = torch.rand((2, 2, 3, 4))# 获取a矩阵的形状b, d, w, h = a.shapeprint(a)# 获取a矩阵中最大值的索引index = torch.argmax(a)
2022-05-03 20:39:12
749
原创 AnatomyNet: Deep Learning for Fast and Fully Automated Whole-volume Segmentation of Head and Neck An
AnatomyNet: Deep Learning for Fast and Fully Automated Whole-volume Segmentation of Head and Neck AnatomyAnatomyNet:用于快速和全自动全体积分割头颈部解剖结构的深度学习发表期刊:Medical Physics(医学3区)发表时间:2019年Abstract**Purpose: ** 放射治疗 (RT) 是头颈部癌症的常见治疗选择。RT计划涉及的一个重要步骤是基于HaN计算机断层扫描 (
2022-04-21 21:07:15
984
原创 Automatic multiorgan segmentation in thorax CT images using U-net-GAN
Automatic multiorgan segmentation in thorax CT images using U-net-GAN使用U-net-GAN在胸部CT图像中的自动多器官分割发表期刊:Medical Physics(医学3区)发表时间:2019年AbstractPurpose: 准确及时的风险器官 (OAR) 分割是高效和高质量放射治疗计划的关键。 这项工作的目的是开发一种基于深度学习的方法,在胸部计算机断层扫描 (CT) 上自动分割多个胸部 OAR,用于放射治疗计划。Meth
2022-04-21 10:16:08
1283
原创 Mask Scoring R-CNN
Mask Scoring R-CNNCVPR2019会议论文主要任务不是实例分割,而是评估获得的实例分割的掩码的质量。文中提到,以前通常用分类类别的置信度来评估分割的掩码的质量,这是没有说服力的,从而提出了一种新的方法来评估预测的掩码质量。Abstract让深度网络意识到自己预测的质量是一个有趣但重要的问题。 在实例分割任务中,在大多数实例分割框架中,实例分类的置信度被用作掩码质量分数。 然而,被量化为实例掩码与其ground truth之间的 IoU 的掩码质量通常与分类分数没有很好的相关性。 在
2022-04-15 21:51:56
2686
1
原创 Multi-organ auto-delineation in head-and-neck MRI for radiation therapy using regional convolutional
Multi-organ auto-delineation in head-and-neck MRI for radiation therapy using regional convolutional neural network使用区域卷积神经网络的头颈部 MRI 放射治疗中的多器官自动描绘期刊:Physics in Medicine and Biology时间:2021年11月14日接收,2022年1月21日发表Abstract磁共振成像 (MRI) 可以在放射治疗中对许多疾病部位进行准确,可
2022-04-15 16:28:11
643
原创 Deep learning-based auto segmentation using generative adversarial network on magnetic resonance ima
Deep learning-based auto segmentation using generativeadversarial network on magnetic resonance imagesobtained for head and neck cancer patients使用生成对抗网络对头颈癌患者获得的磁共振图像进行基于深度学习的自动分割期刊:Journal of Applied Clinical Medical Pyhsics接收时间:2022年2月17日AbstractP
2022-04-14 21:03:55
753
原创 Organ at Risk Segmentation for Head and Neck Cancer using Stratified Learning and Neural Architecture
Organ at Risk Segmentation for Head and Neck Cancer using Stratified Learning and Neural Architecture Search使用分层学习和神经架构搜索对头颈部癌症进行风险器官分割来源:CVPR时间:2020年
2022-04-09 21:51:19
4735
原创 FocusNetv2: Imbalanced large and small organ segmentation with adversarial shape constraint for head
FocusNetv2: Imbalanced large and small organ segmentation with adversarial shape constraint for head and neck CT images发表时间:2021发表期刊:Medical Image Analysis
2022-04-02 22:33:18
1249
原创 利用matlab在图片上手打bounding box框并获取bbox框左下角坐标及相应的宽高
# 没有matlab代码选项,用的python选项,但实际是matlab代码# 我的matlab版本是windows版本的R2022a# 加载图像,'.jpg'是图像格式,也可以是png等其他格式,'选择图像'# 是一个title,可以换成其他的,写完该行代码换行,会弹出一个对话框,可以选择自己想要操作的图像,如Fig.1所示[filename, pathname] = uigetfile({'.jpg'}, '选择图像');# 读取图像src = imread([pathname, filen
2022-03-22 22:44:25
2508
1
转载 RPN的超详细解释
学习过程中看到了这篇博客,记录一下,方便后续回顾。https://blog.csdn.net/weixin_42782150/article/details/110421829
2022-03-19 11:26:24
376
原创 Multi-View Spatial Aggregation Framework for Joint Localization and Segmentation of Organs at Risk i
Multi-View Spatial Aggregation Framework for Joint Localization and Segmentation ofOrgans at Risk in Head and Neck CT Images头颈部CT图像中风险器官的联合定位和分割的多视图空间聚合框架发表期刊:IEEE Transactions on Medical Imaging发表时间:2020年摘要头颈部 ct 图像中高危器官(OARs)的准确分割对于有效的放射治疗至关重要。然而,现
2022-03-18 20:54:40
796
原创 VoxelMorph: A Learning Framework for Deformable Medical Image Registration(医学图像配准文章研读)
VoxelMorph: A Learning Framework for Deformable Medical Image Registration*(VoxelMorph:一种可变形医学图像配准的学习框架)发表时间:2019年发表期刊:IEEE Transactions on Medical Imaging摘要我们提出了 voxelmorph,一个基于快速学习的框架,用于可变形的成对医学图像配准。传统的配准方法为每一对图像优化一个目标函数,这对于大数据集或者丰富的变形模型都是耗时的。相对于这种方法
2022-03-10 20:56:50
4122
1
转载 Python3 configparser报错UnicodeEncodeError
本文为转载文章,原文链接Python3 configparserUnicodeEncodeError
2022-01-08 15:00:41
233
翻译 MMNet: A multi-scale deep learning network for the left ventricular segmentation of cardiac MRI imag
MMNet: A multi-scale deep learning network for the left ventricular segmentation of cardiac MRI images期刊:Applied Intelligence 时间:2021年中科院SCI期刊分区:3区Abstract随着深度学习网络模型的发展,医学图像的自动分割变得越来越普遍。左心室腔分割是心脏疾病诊断的重要步骤,但后处理分割是一项耗时且具有挑战性的任务。这就是全自动分割方法可以帮助专家提高效率
2021-11-15 21:46:49
2331
3
翻译 MC-Net: multi-scale context-attention network for medical CT image segmentation
MC-Net: multi-scale context-attention network for medical CTimage segmentation期刊:Applied Intelligence 时间:2021年中科院SCI期刊分区:3区Abstract编解码器CNN结构在很大程度上改善了CT医学图像分割,但由于编码过程中细节的丢失而遇到了瓶颈,限制了准确率的提高。为了解决这个问题,我们提出了一种多尺度上下文注意网络(MC-Net)。其关键思想是探索跨多个尺度的有用信息以及分割医学
2021-11-15 17:19:36
4077
2
翻译 CE-Net: Context Encoder Network for 2D Medical Image Segmentation
CE-Net: Context Encoder Network for 2D MedicalImage Segmentation发表期刊:IEEE Transactions on Medical Imaging(中科院SCI一区)发表时间:2019年Abstract医学图像分割是医学图像分析的重要步骤。随着卷积神经网络在图像处理领域的迅速发展,深度学习已被用于医学图像分割,如视盘分割、血管检测、肺分割、细胞分割等。然而,连续的池化和跨步卷积操作会导致一些空间信息的丢失。本文提出了一种上下文编码器网
2021-11-04 21:50:39
3116
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人