2023牛客暑假多校第四场(补题向题解:J)

终于有时间来慢慢补补题了

J Qu’est-ce Que C’est?

作为队内的dp手,赛时想了好久,等学弟学妹都出了还是不会,羞愧,还好最终队友做出来了。
链接J Qu’est-ce Que C’est?

题意

长度为 n n n 的数组 a a a,每个数的取值范围 a i = [ − m , m ] a_i = [-m, m] ai=[m,m],问所有满足长度 > 1 >1 >1 的子段的和为非负数的数组可能的数量。 1 ≤ n , m ≤ 5000 1\leq n,m\leq 5000 1n,m5000

以下题解,仅参考懵哥的状态定义,具体解题过程优化和代码都是博主自己琢磨的。

法一思路

dp状态定义 f [ i ] [ j ] : f[i][j]: f[i][j]: i i i 个数,最小后缀和为 j j j 的方案数 j = [ − 5000 , 5000 ] j = [-5000, 5000] j=[5000,5000]。因为是最小后缀和,那么如果有后缀 < − 5000 <-5000 <5000 的说明至少是两个数以上的和为负数,与题意不符是不合法的方案,所以数组大小开到 [ 0 , 10000 ] [0,10000] [0,10000] 即可(离散化后)。

我们先不管时间复杂度,根据dp定义先敲个状态转移出来,代码如下:

#include <bits/stdc++.h>
using namespace std;

#define ll long long

const int N = 5010, mod = 998244353;

int f[N][N * 2]; // 前i个数,最小后缀和为j的方案数 j = [-5000, 5000]

void add(int& a, int b){
    a = (a + b) % mod;
}
int main(){
    int n, m;
    cin >> n >> m;

    f[0][2 * m] = 1;
    for(int i = 1; i <= n; i ++){
        for(int j = -m; j <= m; j ++){ // 枚举最小后缀
            for(int k = m; k >= -m; k --){ // 枚举当前a_i选哪个数
                if(j + k < 0) break;
                add(f[i][min(j + k, k) + m], f[i - 1][j + m]);
            }
        }
        
    }
    
    int ans = 0;
    for(int i = -m; i <= m; i ++){
        add(ans, f[n][i + m]);
    }
    cout << ans;
    return 0;
}

时间复杂度为 O ( n 3 ) O(n^3) O(n3),我们观察一下代码如何优化,发现会有大量连续的 k k k f [ i ] [ min ⁡ ( j + k , k ) ] f[i][\min(j + k, k)] f[i][min(j+k,k)] 加的是同一个状态 f [ i − 1 ] [ j ] f[i - 1][j] f[i1][j]。那么经典优化方案不就来了吗,差分前缀和优化。

以下分情况讨论:
因为是 min ⁡ ( j + k , k ) \min(j + k, k) min(j+k,k)

  1. j j j 是非正数
    无论当前 k k k 选什么, j + k ≤ k j + k \leq k j+kk,所以状态一定是转移到 j + k j + k j+k,所以对于一个非正数的 j j j 可转移的范围就是 0 ∼ j + m 0 \sim j + m 0j+m
// 区间 [l, r] + val  f_l + val  f_{r + 1} + val
for(int j = -m; j <= 0; j ++){
    f[i][m] = (f[i][m] + f[i - 1][j + m]) % mod;// 差分 +
    f[i][m + j + m + 1] = (f[i][m + j + m + 1] + mod - f[i - 1][j + m]) % mod;// 差分 -
}
  1. j j j 是正数
    同理无论当前 k k k 选什么, k ≤ j + k k \leq j + k kj+k,所以状态一定是转移到 k k k,所以对于一个正数 j j j,可以转移的范围就是 − j ∼ m -j\sim m jm
for(int j = 1; j <= m; j ++){
    f[i][-j + m] = (f[i][-j + m] + f[i - 1][j + m]) % mod;
    f[i][m + m + 1] = (f[i][m + m + 1] + mod - f[i - 1][j + m]) % mod;
}

法一完整代码

#include <bits/stdc++.h>
using namespace std;

#define ll long long

const int N = 5010, mod = 998244353;

int f[N][N * 2]; // 前i个数,最小后缀和为j的方案数 j = [-5000, 5000]

void add(int& a, int b){
    a = (a + b) % mod;
}
int main(){
    int n, m;
    cin >> n >> m;

    f[0][2 * m] = 1;
    for(int i = 1; i <= n; i ++){
        /*
        for(int j = -m; j <= m; j ++){
            for(int k = m; k >= -m; k --){
                if(j + k < 0) break;
                add(f[i][min(j + k, k) + m], f[i - 1][j + m]);
            }
        }
        */
        
        // 考虑差分前缀和优化
        // j 是 负数 k 是正数 f[i][j + k + m] 从0 ~ m + j
        // j 是 正数 k 是负数/正数 f[i][k + m] 从-j ~ m

        for(int j = -m; j <= 0; j ++){
            f[i][m] = (f[i][m] + f[i - 1][j + m]) % mod; // 差分 +
            f[i][m + j + m + 1] = (f[i][m + j + m + 1] + mod - f[i - 1][j + m]) % mod; // 差分 -
        }
        for(int j = 1; j <= m; j ++){
            f[i][-j + m] = (f[i][-j + m] + f[i - 1][j + m]) % mod;
            f[i][m + m + 1] = (f[i][m + m + 1] + mod - f[i - 1][j + m]) % mod;
        }
        for(int j = -m + 1; j <= m; j ++){ // 前缀和
            f[i][j + m] = (f[i][j + m] + f[i][j + m - 1]) % mod;
        }
    }

    int ans = 0;
    for(int i = -m; i <= m; i ++){
        add(ans, f[n][i + m]);
    }
    cout << ans;
    return 0;
}

法二思路

首先先说说博主自己解题时卡在什么地方,我当时认为dp必须维护 a i − 1 a_{i-1} ai1 a i − 2 a_{i-2} ai2 位置上的数是什么,才能确定当前选择的 a i a_i ai 的选择是否合法,这样的时空复杂度都达到了 n 3 n^3 n3,而且也没有能发现优化的点。而不得不说这个思路也很妙,仅仅一个点就将时空都缩减了一维,可以不用维护 a i − 2 a_{i-2} ai2 的情况。

你可能会和我一样疑惑,如果不维护 a i − 2 a_{i-2} ai2 a i − 2 + a i − 1 + a i < 0 a_{i-2}+a_{i-1}+a_i < 0 ai2+ai1+ai<0 的情况如何排除,我们考虑一下合法序列的情况:对于一个合法序列,肯定不会出现两个连续的负数,即一个负数的后继肯定是正数。 所以dp方程的第二维维护的就是当前节点的数值大小,因为负数是和正数绑定的,我们将一个负数和其后继的正数当做一个数来记录,转移时直接从 d p i − 1 dp_{i-1} dpi1 转移到 d p i + 1 dp_{i+1} dpi+1

f [ i ] [ j ] : f[i][j]: f[i][j] i i i 个数,第 i i i 个数大小为 j j j 的合法方案数。

老样子,我们不考虑优化先写个暴力转移出来

#include <bits/stdc++.h>
using namespace std;

const int N = 5010, mod = 998244353;

int f[N][N * 2], pre[N * 2];

void add(int& a, int b){
    a = (a + b) % mod;
}
int main(){
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);

    int n, m;
    cin >> n >> m;
    f[0][m] = 1; // 初始化一个最大的数作为第0个数
    
    int ans = 0;
	
    // 暴力转移
    for(int i = 1; i <= n; i ++){
        
        // 枚举前一个数的值j,因为但凡出现负数我们就会将其与一个正数合并为非负数一起维护,所以不需要离散化和枚举负数
        for(int j = 0; j <= m; j ++){ 
            for(int k = -j; k <= 0; k ++){ // 枚举当前选负数
            	if(i == n) add(ans, f[i - 1][j]); // 最后一个数不用和正数绑定,单独计算
                else{
                    for(int p = -k; p <= m; p ++){ // 枚举与负数绑定一起选的正数
                        add(f[i + 1][k + p], f[i - 1][j]);
                    }
                }
            }
            for(int k = 1; k <= m; k ++){ // 枚举当前选的正数
                add(f[i][k], f[i - 1][j]);
            }   
        }
    }
    for(int i = 0; i <= m; i ++){
        add(ans, f[n][i]);
    }
    cout << ans << "\n"; 
    return 0;
}

先从简单的开始优化,看当前选的数 k k k 为正数的情况,我们发现dp定义中,将所有负数和正数绑定在一起,所以dp状态中所有数都是正数。也就是所有的 j j j 都可以转移到 k k k,我们直接记录一下前缀和,枚举 k k k 全部加上即可,代码如下:

for(int i = 1; i <= n; i ++){
    pre[1] = f[i - 1][0];
    for(int j = 1; j <= m; j ++){ // 前缀和
        pre[j + 1] = (pre[j] + f[i - 1][j]) % mod;
    }
    for(int k = 1; k <= m; k ++){ // 枚举当前选的正数
        f[i][k] = (f[i][k] + pre[m + 1]) % mod; // 正数之间任意转移直接将前缀和全部加上
    }
}

再考虑当前 k k k 为负数需要和正数绑定的情况。若当前选负数,那么该负数与 前一个正数,后一个正数的和都不能为负,所以直接枚举当前选哪个负数。若当前选的负数为 k k k,前一个正数 j ≥ − k j \geq -k jk 且 后一个正数 p ≥ − k p \geq -k pk,也就是说 j = [ − k , m ] j = [-k, m] j=[k,m] 可以转移到 p = [ − k , m ] p = [-k, m] p=[k,m]。即:

f [ i + 1 ] [ 0 ∼ k + m ] + ∑ j = − k m f [ i − 1 ] [ j ] f[i+1][0\sim k+m] + \sum_{j = -k}^{m}f[i-1][j] f[i+1][0k+m]+j=kmf[i1][j]

f [ i − 1 ] f[i-1] f[i1] 已经用前缀和维护好了,而 f [ i + 1 ] f[i+1] f[i+1] 这种经典的连续一段加同一个数的转移是否能想到优化方法,没错就是差分前缀和,具体见代码。

法二完整代码

#include <bits/stdc++.h>
using namespace std;

const int N = 5010, mod = 998244353;

int f[N][N * 2], pre[N * 2];

void add(int& a, int b){
    a = (a + b) % mod;
}
int main(){
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);

    int n, m;
    cin >> n >> m;
    f[0][m] = 1; // 初始化一个最大的数作为第0个数
    
    int ans = 0;
    // 优化
    for(int i = 1; i <= n; i ++){
        
        pre[1] = f[i - 1][0];
        for(int j = 1; j <= m; j ++){ // 前缀和
            pre[j + 1] = (pre[j] + f[i - 1][j]) % mod;
        }

        // 考虑到若当前选负数,那么该负数和 前一个正数 和 后一个正数的和都不能为负,所以直接枚举当前选哪个负数
        for(int k = -m; k <= 0; k ++){
            int sum = (pre[m + 1] + mod - pre[-k]) % mod; // f[i - 1] 能转移的前缀和

            if(i < n){ // 前一个数和后一个数都至少要 >= -k, 转移范围为[i - 1][-k, m](前缀和) -> [i + 1][0, k + m](差分前缀和)
                f[i + 1][0] = (f[i + 1][0] + sum) % mod; // 差分 +
                f[i + 1][k + m + 1] = (f[i + 1][k + m + 1] + mod - sum) % mod; // 差分 -
            }
            else{// 最后一个数可以直接选负数
                ans = (ans + sum) % mod; // 转移范围为 f[i - 1][-k ~ m] -> f[i][k] 直接加在ans上
            }
        }

        for(int j = 1; j <= m; j ++){// 前缀和维护差分
            f[i + 1][j] = (f[i + 1][j] + f[i + 1][j - 1]) % mod; 
        }

        for(int k = 1; k <= m; k ++){ // 枚举当前选的正数
            f[i][k] = (f[i][k] + pre[m + 1]) % mod; // 正数之间任意转移直接将前缀和全部加上
        }
    }


    for(int i = 0; i <= m; i ++){
        add(ans, f[n][i]);
    }
    cout << ans << "\n"; 
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值