李红老师说: 柯西积分定理是打开复变函数积分的钥匙,需要牢牢掌握它!
内容如下:
如
果
f
(
z
)
在
单
连
通
域
D
内
解
析
,
C
为
D
内
任
一
闭
曲
线
则
∫
c
f
(
z
)
d
z
=
0
成
立
!
如果f(z)在单连通域D内解析,C为D内任一闭曲线则 ∫_c f(z) dz = 0 成立!
如果f(z)在单连通域D内解析,C为D内任一闭曲线则∫cf(z)dz=0成立!
因为这个定理是在一段闭曲线上使用的,并且被积函数满足在D内解析的条件,这里我们使用格林公式来证明较为方便。
第一步:格林公式:
∫
c
p
d
x
+
q
d
y
=
∯
S
(
∂
q
∂
x
−
∂
p
∂
y
)
⋅
d
S
∫_cpdx+qdy = \oiint \limits_{S} \mathbf{ ( \frac{\partial q}{ \partial x}- \frac{\partial p}{\partial y})} \cdot \mathrm{d}\mathbf{S}
∫cpdx+qdy=S∬(∂x∂q−∂y∂p)⋅dS
第二步:
设
f
(
z
)
在
D
内
解
析
,
且
一
阶
导
函
数
f
′
(
z
)
连
续
,
实
部
u
和
虚
部
v
的
偏
导
数
存
在
且
连
续
。
设f(z)在D内解析,且 一阶导函数 f'(z) 连续,实部 u 和虚部 v 的偏导数存在且连续。
设f(z)在D内解析,且一阶导函数f′(z)连续,实部u和虚部v的偏导数存在且连续。
有:
已知
u
=
u
(
x
,
y
)
,
v
=
v
(
x
,
y
)
u = u(x,y), v = v(x,y)
u=u(x,y),v=v(x,y)
有
∫
c
f
(
z
)
d
z
=
∫
c
u
+
i
v
d
(
u
+
i
v
)
=
∫
c
u
d
x
−
v
d
y
+
i
(
∫
c
v
d
x
+
u
d
y
)
=
∯
S
(
∂
u
∂
y
+
∂
v
∂
x
)
⋅
d
S
+
i
×
∯
S
(
∂
u
∂
x
−
∂
v
∂
y
)
⋅
d
S
∫_cf(z)dz = ∫_cu+iv d(u+iv) = ∫_cudx-vdy+i(∫_cvdx+udy) \\ = \oiint \limits_{S} \mathbf{ ( \frac{\partial u}{ \partial y}+ \frac{\partial v}{\partial x}} )\cdot \mathrm{d}\mathbf{S} + i × \oiint \limits_{S} \mathbf{ ( \frac{\partial u}{ \partial x} - \frac{\partial v}{\partial y}}) \cdot \mathrm{d}\mathbf{S}
∫cf(z)dz=∫cu+ivd(u+iv)=∫cudx−vdy+i(∫cvdx+udy)=S∬(∂y∂u+∂x∂v)⋅dS+i×S∬(∂x∂u−∂y∂v)⋅dS
到这里,就要利用上面的已知条件了。
∵ f(z) 在D内是解析的,而解析函数的导函数仍然解析,即满足柯西黎曼方程,
∂
u
∂
x
=
∂
v
∂
y
,
∂
v
∂
x
=
−
∂
u
∂
y
\frac{\partial u}{ \partial x}=\frac{\partial v}{\partial y}, \frac{\partial v}{ \partial x} = - \frac{\partial u}{\partial y}
∂x∂u=∂y∂v,∂x∂v=−∂y∂u
带入上式,证毕!
bingo!
有兴趣了解 解析函数的导函数仍然解析的,可以看我的博文。
至于解析函数为什么满足柯西黎曼方程,这是解析函数的定义,处处可微,且柯西黎曼方程是判断复变函数是否解析的必要条件,处处可微+柯西黎曼方程 = 解析函数。而柯西积分定理与这个式子综合起来看更有感觉!