证明柯西积分定理

李红老师说: 柯西积分定理是打开复变函数积分的钥匙,需要牢牢掌握它!
内容如下:
如 果 f ( z ) 在 单 连 通 域 D 内 解 析 , C 为 D 内 任 一 闭 曲 线 则 ∫ c f ( z ) d z = 0 成 立 ! 如果f(z)在单连通域D内解析,C为D内任一闭曲线则 ∫_c f(z) dz = 0 成立! f(z)DCD线cf(z)dz=0
因为这个定理是在一段闭曲线上使用的,并且被积函数满足在D内解析的条件,这里我们使用格林公式来证明较为方便。
第一步:格林公式:
∫ c p d x + q d y = ∯ S ( ∂ q ∂ x − ∂ p ∂ y ) ⋅ d S ∫_cpdx+qdy = \oiint \limits_{S} \mathbf{ ( \frac{\partial q}{ \partial x}- \frac{\partial p}{\partial y})} \cdot \mathrm{d}\mathbf{S} cpdx+qdy=S (xqypdS

第二步: 设 f ( z ) 在 D 内 解 析 , 且 一 阶 导 函 数 f ′ ( z ) 连 续 , 实 部 u 和 虚 部 v 的 偏 导 数 存 在 且 连 续 。 设f(z)在D内解析,且 一阶导函数 f'(z) 连续,实部 u 和虚部 v 的偏导数存在且连续。 f(z)Df(z)uv
有:
已知 u = u ( x , y ) , v = v ( x , y ) u = u(x,y), v = v(x,y) u=u(x,y),v=v(x,y)

∫ c f ( z ) d z = ∫ c u + i v d ( u + i v ) = ∫ c u d x − v d y + i ( ∫ c v d x + u d y ) = ∯ S ( ∂ u ∂ y + ∂ v ∂ x ) ⋅ d S + i × ∯ S ( ∂ u ∂ x − ∂ v ∂ y ) ⋅ d S ∫_cf(z)dz = ∫_cu+iv d(u+iv) = ∫_cudx-vdy+i(∫_cvdx+udy) \\ = \oiint \limits_{S} \mathbf{ ( \frac{\partial u}{ \partial y}+ \frac{\partial v}{\partial x}} )\cdot \mathrm{d}\mathbf{S} + i × \oiint \limits_{S} \mathbf{ ( \frac{\partial u}{ \partial x} - \frac{\partial v}{\partial y}}) \cdot \mathrm{d}\mathbf{S} cf(z)dz=cu+ivd(u+iv)=cudxvdy+i(cvdx+udy)=S (yu+xv)dS+i×S (xuyv)dS
到这里,就要利用上面的已知条件了。
∵ f(z) 在D内是解析的,而解析函数的导函数仍然解析,即满足柯西黎曼方程,
∂ u ∂ x = ∂ v ∂ y , ∂ v ∂ x = − ∂ u ∂ y \frac{\partial u}{ \partial x}=\frac{\partial v}{\partial y}, \frac{\partial v}{ \partial x} = - \frac{\partial u}{\partial y} xu=yvxv=yu
带入上式,证毕!
bingo!

有兴趣了解 解析函数的导函数仍然解析的,可以看我的博文。
至于解析函数为什么满足柯西黎曼方程,这是解析函数的定义,处处可微,且柯西黎曼方程是判断复变函数是否解析的必要条件,处处可微+柯西黎曼方程 = 解析函数。而柯西积分定理与这个式子综合起来看更有感觉!

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值