关于为什么sklearn画出来的ROC曲线图是折线的问题

经过

师兄的提醒,我将单一值的标签图用最初的概率图进行替换。
不要扯什么这个那个,就是不能用阈值去将概率图变成最终的分割图,那个阈值就是ROC曲线图中需要的,我们只要提供模型分割的概率图即可。

评论区中有小伙伴不理解这个概率图的问题,解释如下:
1、在模型最后的输出部分会经过一次分类激活,这其中的过程就是将概率(0-1)转换为真实的标签(0)| (1)。
2、在经过激活转换后得到的图像会很直,并且会出现转折点。

故,在模型激活之前保存神经网络的结果就能得到所谓的概率图啦!

问题解决!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值