四叶玫瑰数

四叶玫瑰数是指四位数各位上的数字的四次方之和等于本身的数。



	public static void main(String[] args){
		for(int a=1000;a<10000;a++){
			int a1=a%10;
			int a2=a%100/10;
			int a3=a%1000/100;
			int a4=a/1000;
			if(Math.pow(a1, 4)+Math.pow(a2, 4)+
					Math.pow(a3, 4)+Math.pow(a4, 4)==a){
				System.out.print(a+" ");
			}
		}
	}


四叶玫瑰(Quadrille Number),也称为八皇后问题变种,是一个经典的回溯算法问题,目标是在8x8的棋盘上放置4个皇后,使得它们互不攻击,即任意两个皇后不在同一行、同一列或对角线上。这是一个常见的计算机科学练习题,以下是用C++编写的一个简单版本: ```cpp #include <iostream> #include <vector> using namespace std; // 检查当前位置是否可以放置皇后 bool isSafe(vector<vector<bool>>& board, int row, int col) { // 检查行 for (int i = 0; i < row; i++) { if (board[i][col] == true) return false; } // 检查左上方对角线 int-diagonal = row - col + 7; for (int i = 0; i < diagonal && i < board.size(); i++) { if (board[i][i + col - row] == true) return false; } // 检查右上方对角线 int-diagonal = row + col; for (int i = 0; i < diagonal && i < board.size(); i++) { if (board[i][i - col + row] == true) return false; } return true; } // 递归函,尝试在给定位置放置皇后 void solve(vector<vector<bool>>& board, int col) { if (col >= 4) { // 如果放置了4个皇后,打印结果 for (int i = 0; i < board.size(); i++) { for (int j = 0; j < board[0].size(); j++) { cout << (board[i][j] ? "Q" : "."); } cout << endl; } cout << "Solution found!" << endl; return; } // 对每个位置尝试放置皇后 for (int i = 0; i < board.size(); i++) { if (isSafe(board, i, col)) { board[i][col] = true; solve(board, col + 1); // 递归调用下一个列 board[i][col] = false; // 如果回溯到此位置,恢复状态并尝试其他位置 } } } int main() { vector<vector<bool>> board(8); solve(board, 0); return 0; } ``` 这个代码实现了四叶玫瑰的问题,当你运行程序时,它会尝试找到所有可能的解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值