图遍历代码

DFS

//遍历
int visited[MAXV] = { 0 };
void DFS(AdjGraph* G, int v)
{
	ArcNode* p;
	visited[v] = 1; //初始
	cout << v;
	p = G->adjlist[v].firstarc; //v的第一个邻接点
	while (p != NULL)
	{
		if (visited[p->adjvex] == 0)
			DFS(G, p->adjvex);
		p = p->nextarc;
	}
}

BFS

前置队列代码
//前置代码
typedef struct {
	int data[MAXV];
	int front, rear;
}SqQueue;
void InitQueue(SqQueue*& q)
{
	q = (SqQueue*)malloc(sizeof(SqQueue));
	q->front = q->rear = 0;
}
void DestroyQueue(SqQueue*& q)
{
	free(q);
}
bool QueueEmpty(SqQueue* q)
{
	return (q->front == q->rear);
}
bool enQueue(SqQueue*& q, int e)
{
	if ((q->rear + 1) % MAXV == q->front)
		return false;
	q->rear = (q->rear + 1) % MAXV;
	q->data[q->rear] = e;
	return true;
}
bool deQueue(SqQueue*& q, int& e)
{
	if (q->front == q->rear)
		return false;
	q->front = (q->front + 1) % MAXV;
	e = q->data[q->front];
	return true;
}
BFS 
void BFS(AdjGraph* G, int v)
{
	int w, i;  //w记录出队结点编号
	ArcNode* p;
	SqQueue* qu;  //环形
	InitQueue(qu);
	int visited[MAXV];
	for (int i = 0; i < G->n; i++)
		visited[i] = 0;
	cout << v;
	visited[v] = 1;
	enQueue(qu, v);
	while (!QueueEmpty(qu))
	{
		deQueue(qu, w);
		p = G->adjlist[w].firstarc; //第w头结点的第一个边结点
		while (p != NULL)
		{
			if (visited[p->adjvex] == 0) //未被访问过
			{
				cout << p->adjvex; //三步: 输出,做标记,进队
				visited[p->adjvex] = 1;
				enQueue(qu, p->adjvex);
			}
			p = p->nextarc;
		}
	}
	cout << endl;
}

 非连通图的遍历

void DFS1(AdjGraph* G)
{
	int i;
	for (int i = 0; i < G->n; i++)
		if (visited[i] == 0)
			DFS(G, i);
}
void BFS1(AdjGraph* G)
{
	int i;
	for (int i = 0; i < G->n; i++)
		if (visited[i] == 0)
			BFS(G, i);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值