UVa12169

我们可以暴力枚举a,然后通过x1和x3确定b的值,然后确定其他的数字,一旦出现错误就放弃这组解。

关键问题就在于如何通过a,x1,x3确定b的值

x2 = ( x1 * a + b) % M
x3 = ( x2 * a + b ) % M = ( ( x1 * a + b ) % M * a + b ) % M
x3 - k * M = x1 * a % M * a % M + b * a % M + b
我们不妨设b<M
b * ( a + 1 ) + k * M = x3 - x1 * a * a
我们想要求出b,即就是求出这个二元一次方程的一组解,这时候用扩展欧几里得算法就可以解决。(虽然他的原理我还没有搞懂)

可是写出来以后我却一直连样例都过不了,经过一个多小时的探索,我发现,爆longlong了,你永远不知道哪里会爆long long,无语。

得到的经验,凡是对空间复杂度要求不是很高又有乘法的运算还是尽量用long long ,可以避免爆long long 而引发的错误。
经过反复调试,我终于在没有用long long 的情况下做出了这道题(心酸)

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<climits>
#include<cctype>
#include<queue>
#include<set>

using namespace std;

typedef long long ll;
const int INF=0x3f3f3f3f;
const int MAXN=105;
const int MOD=10001;
int a1[MAXN],a2[MAXN];
int n;
int a,b;
int c,t,p,q,k;

void gcd_ojbk(int a,int b,int& d,int& x,int& y)
{
	if(!b)
	{
		d=a; x=1; y=0;
	}
	else
	{
		gcd_ojbk(b,a%b,d,y,x);
		y-=x*(a/b); 
	}
}

int main()
{
	scanf("%d",&n);
	for(ll i=1;i<=n;i++)
	{
		scanf("%d",&a1[i]);
	}
	for(a=0;a<MOD;a++)
	{
		bool flag=true;
		
		t=a+1;
		p=(a1[2]-a1[1]*a%MOD*a%MOD+MOD)%MOD;
		
		gcd_ojbk(MOD,t,q,c,k);
		
		if(p%q) continue;
		
		b=((k*(p/q)%MOD+MOD)%MOD);	//这里很容易爆long long 
		
		a2[1]=(a*a1[1]%MOD+b)%MOD;
		
		for(int i=2;i<=n;i++)
		{
			if((a*a2[i-1]%MOD+b)%MOD!=a1[i])
			{
				flag=false;
				break;
			}
			a2[i]=(a*a1[i]%MOD+b)%MOD;
		}
		if(flag)
		{
			for(int i=1;i<=n;i++)
			{
				printf("%d\n",a2[i]);
			}
			break;
		}
	}
	return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值