每日一题:leetcode1489. 找到最小生成树里的关键边和伪关键边

时隔多年我终于又开始写博客了,主要是已经放假了,之前一直忙于考试和课设没有时间写博客,学习笔记也因为买了iPad的缘故大部分都是手写的了。

假期想要把以前做过的项目都整理一下放在githubCSDN上。

也已经很久没有写算法题了,直接导致今天这道题虽然我看了题解但是自己还是写了好久。

题目描述

传送门
在这里插入图片描述

题目解析

题解有两种解法
第一种解法比较朴素,就是按照关键边和伪关键边的定义。
关键边:在所有MST中都会出现的边
关键边性质:删除以后只能得到一个边权和更大的MST(或者无法得到MST)
伪关键边:会出现在一些MST中但是不会出现在所有MST中的边

因此,我们对每条边先判断是不是关键边,如果不是再判断是否是伪关键边。
判断关键边的思路很清晰,就是删去这条边再判断是否还能得到和之前边权和相同的MST。

但是判断伪关键边就有一些技巧了:我们很难得到所有的最小生成树,对于一条边我们如何判断这条边在不在MST中呢,题解的做法是最先将这条边加入到MST中,然后再对剩下的求解MST,如果最后MST和之前的权值和相同则说明这条边在MST中。

我和题解不同的做法在于(我认为是一点小优化):

  • 刚开始需要求一次MST,求关键边的时候只枚举这个MST中的边(其他的边不可能在伪关键边中)
  • 使用kind数组记录每条边的属性,在求完所有的关键边以后再求伪关键边,如果某条边已经在一个MST中则直接加入伪关键边(因为他不是关键边,满足伪关键边的定义)

第二种我直接没有看,因为Tarjan算法我已经忘光了,而且这道题好像还用到了kraskal算法的一个性质(并不知道

在Kruskal 算法中,对于任意的实数 w,只要我们将给定的边按照权值从小到大进行排序,那么当我们按照顺序处理完所有权值小于等于 w 的边之后,对应的并查集的连通性是唯一确定的,无论我们在排序时如何规定权值相同的边的顺序。

感觉太难了,不想看了。

AC代码

class Solution {
public:
    static constexpr int MAXN = 105;
    int father[MAXN];
    int kind[MAXN*MAXN];
    int m;  //边数
    int value = 0;
    int root(int x) {
        return x == father[x] ? x : (father[x] = root(father[x]));
    }
    void merge(int u, int v) {
        father[root(u)] = root(v);
    }
    vector<int> critical_edges;
    vector<int> pseudo_critical_edges;
    /**
    * 求已经删去第del条边的图的最小生成树
    * 并差集的状态为father
    * cnt用来记录当前该最小生成树中有多少条边
    * ret用来记录当前最小生成树的权值和
    */
    int kruskal(const int n, const vector<vector<int>> &edges, int del, int cnt, int ret) {
        for (int i = 0; i < m; ++i) {
            if (i == del) {
                //如果是已经删除的边,则跳过
                continue;
            }
            int u = edges[i][0];
            int v = edges[i][1];
            if (root(u) != root(v)) {
                merge(u, v);
                ret += edges[i][2];
                ++cnt;
                if (kind[i] == -1 && del == -1)
                    kind[i] = 0;    //表示该边是某个最小生成树的一条边
            }
        }
        if (cnt == n-1) {
            //说明形成了最小生成树
            return ret;
        } else {
            //说明原本不是一个连通分量
            return value + 122;
        }
    }
    static bool compare(const vector<int>& a, const vector<int>& b) {
        return a[2] < b[2];
    }
    vector<vector<int>> findCriticalAndPseudoCriticalEdges(int n, vector<vector<int>>& edges) {
        memset(kind, -1, sizeof(kind));
        m = edges.size();
        for (int i = 0; i < m; ++i) {
            edges[i].push_back(i);
        }
        sort(edges.begin(), edges.end(), compare);
        for (int i = 0; i < n; ++i) {
            //并查集的初始化
            father[i] = i;
        }
        value = kruskal(n, edges, -1, 0, 0);
        //寻找关键边
        for (int i = 0; i < m; ++i) {
            if (kind[i] == -1) {
                //不是生成树中的边
                continue;
            }
            for (int i = 0; i < n; ++i) {
                //并查集的初始化
                father[i] = i;
            }
            int v = kruskal(n, edges, i, 0, 0);
            if (v > value) {
                //说明是关键边
                kind[i] = 1;
                critical_edges.push_back(edges[i][3]);
            }
        }
        //寻找伪关键边
        for (int i = 0; i < m; ++i) {
            if (kind[i] == 1) continue; //关键边不可能是伪关键边
            if (kind[i] == 0) {
                //如果在某个生成树中还不是关键边则一定是伪关键边
                pseudo_critical_edges.push_back(edges[i][3]);
                continue;
            }
            //对于普通边,首先将其加入到生成树中,然后再判断
            for (int i = 0; i < n; ++i) {
                //并查集的初始化
                father[i] = i;
            }
            merge(edges[i][0], edges[i][1]);
            int v = kruskal(n, edges, -1, 1, edges[i][2]);
            if (v == value) {
                //说明加入这条边以后仍然能够得到最小生成树,是伪关键边
                pseudo_critical_edges.push_back(edges[i][3]);
            }
        }
        return {critical_edges, pseudo_critical_edges};
    }
};

官方题解代码

// 并查集模板
class UnionFind {
public:
    vector<int> parent;
    vector<int> size;
    int n;
    // 当前连通分量数目
    int setCount;
    
public:
    UnionFind(int _n): n(_n), setCount(_n), parent(_n), size(_n, 1) {
        iota(parent.begin(), parent.end(), 0);
    }
    
    int findset(int x) {
        return parent[x] == x ? x : parent[x] = findset(parent[x]);
    }
    
    bool unite(int x, int y) {
        x = findset(x);
        y = findset(y);
        if (x == y) {
            return false;
        }
        if (size[x] < size[y]) {
            swap(x, y);
        }
        parent[y] = x;
        size[x] += size[y];
        --setCount;
        return true;
    }
    
    bool connected(int x, int y) {
        x = findset(x);
        y = findset(y);
        return x == y;
    }
};

class Solution {
public:
    vector<vector<int>> findCriticalAndPseudoCriticalEdges(int n, vector<vector<int>>& edges) {
        int m = edges.size();
        for (int i = 0; i < m; ++i) {
            edges[i].push_back(i);
        }
        sort(edges.begin(), edges.end(), [](const auto& u, const auto& v) {
            return u[2] < v[2];
        });

        // 计算 value
        UnionFind uf_std(n);
        int value = 0;
        for (int i = 0; i < m; ++i) {
            if (uf_std.unite(edges[i][0], edges[i][1])) {
                value += edges[i][2];
            }
        }

        vector<vector<int>> ans(2);
        
        for (int i = 0; i < m; ++i) {
            // 判断是否是关键边
            UnionFind uf(n);
            int v = 0;
            for (int j = 0; j < m; ++j) {
                if (i != j && uf.unite(edges[j][0], edges[j][1])) {
                    v += edges[j][2];
                }
            }
            if (uf.setCount != 1 || (uf.setCount == 1 && v > value)) {
                ans[0].push_back(edges[i][3]);
                continue;
            }

            // 判断是否是伪关键边
            uf = UnionFind(n);
            uf.unite(edges[i][0], edges[i][1]);
            v = edges[i][2];
            for (int j = 0; j < m; ++j) {
                if (i != j && uf.unite(edges[j][0], edges[j][1])) {
                    v += edges[j][2];
                }
            }
            if (v == value) {
                ans[1].push_back(edges[i][3]);
            }
        }
      
        return ans;
    }
};

//作者:LeetCode-Solution
//链接:https://leetcode-cn.com/problems/find-critical-and-pseudo-critical-edges-in-minimum-spanning-tree/solution/zhao-dao-zui-xiao-sheng-cheng-shu-li-de-gu57q/
//来源:力扣(LeetCode)
//著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

仔细研究官方题解的代码感觉收益颇多:

  • 使用iota(begin, end, init)对数组进行初始化,其中init为初始值,需要能够和++运算符结合
  • 使用功能完善的并差集模板(我自己每次都是手写,然后写地支离破碎)
  • 使用lamda表达式进行函数定义
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值