http://poj.org/problem?id=1700
此题讲的是N个人过河,每个人都有自己的过河时间,一条船只能承受2个人,所用时间为其中过河时间最多的,所以呢,想到有两种情况,第一种:过河时间最少的人来回接送其他人,第二种:过河时间最少和次少的人来回接送其他人,刚开始就觉得第一种时间必然是最少的,但是仔细想想,不然。因为第一种情况虽然单次过河时间少,但送人的次数要多,如第1个人(过河时间最少)接送第i人 dp[i]=dp[i-1]+time[0]+time[i]; 而第二种情况呢,虽然来回次数多,但是接送的人要多,如第1个人接送第2个人过河,第二个人回来,再让第i和i-1个人过去,然让第1个人回来...
样例是1 2 5 10 所以可以让1、2过去 2回来 花费3 再让5、10过去 1 回来 所以总花费是17
#include<stdio.h>
#include<stdlib.h>
#include <iostream>
#define N 1005
using namespace std;
int cmp(const void *a,const void *b)
{
return *(int *)a-*(int *)b;
}
int a[N];
int dp[N];
int n;
int main()
{
int i,j,t,k;
int min1,min2;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=0; i<n; i++)
scanf("%d",&a[i]);
qsort(a,n,sizeof(a[0]),cmp);
dp[0]=a[0];//a[0]一个人
dp[1]=a[1];//a[1],a[0]两个人中的最大一个
for(i=2; i<n; i++)
{
min1=dp[i-1]+a[i]+a[0];
min2=dp[i-2]+a[1]+a[0]+a[i]+a[1];
//最快的和次快的过去,次快的回来,所以a[1]+a[1];
//最慢的和次慢的过去,最快的回来,所以a[i]+a[0];
dp[i]=min(min1,min2); //取小的
}
printf("%d\n",dp[n-1]);
}
return 0;
}