[BZOJ1040]ZJOI2008 骑士|环套树DP

容易看出来答案就是一个无向图的最大点权独立集,但是数据这么大显然没法搞。。这种选和不选的问题可能用树DP搞,可是貌似不一定是树。。在观察数据的特性,发现只有至多N条边,而且每个点至少连有一条边,YY一下发现这就是一个森林只不过一些树上有一个环,把它叫做环套树森林。。这下好搞了,用dfs找环,然后强制断环,设断掉的边为(u,v)那么以u和v为根分别跑一次树dp,去f[u][0]和f[v][0]的最大值加入答案即可。。这里要注意一个小细节,可能会有重边,处理的不好的话会重复累加答案,我的方法是弄一个标记数组,但是每次清空会T掉,然后我就想起了时间戳大法好,然后就过了。。

#include<iostream>
#include<cstdio>
#include<memory.h>
#define N 1000005
#define ll long long
using namespace std;
struct edge{
	int e,k,next;
}ed[N*2];
ll f[N][2],ans,ans1,q[N];
int n,i,j,ne=0,t,x1,x2,a[N],u[N],vis[N];
bool flag;
void add(int s,int e)
{
	ed[++ne].e=e;ed[ne].k=1;
	ed[ne].next=a[s];a[s]=ne;
}
void dfs(int x,int from)
{
	vis[x]=-1;
	for (int j=a[x];j;j=ed[j].next)
		if (ed[j].e!=from&&vis[ed[j].e]==-1&&!flag)
		{
			x1=x;x2=ed[j].e;
			flag=true;
		}
		else if (vis[ed[j].e]==0) dfs(ed[j].e,x);
	vis[x]=1;
}
void dp(int x,int now)
{
	u[x]=now;
	f[x][1]=q[x];f[x][0]=0;
	for (int j=a[x];j;j=ed[j].next)
		if (ed[j].k&&u[ed[j].e]<now) 
		{
			dp(ed[j].e,now);
			f[x][1]+=f[ed[j].e][0],f[x][0]+=max(f[ed[j].e][1],f[ed[j].e][0]);
		}
}
int main()
{
	freopen("1040.in","r",stdin);
	scanf("%d",&n);
	for (i=1;i<=n;i++)
	{
		scanf("%I64d%d",&q[i],&t);
		add(i,t);add(t,i);
	}
	t=0;memset(u,0,sizeof(u));
	for (i=1;i<=n;i++)
		if (!vis[i])
		{
			flag=false;
			dfs(i,0);
			if (flag)
			{
				for (j=a[x1];j;j=ed[j].next)
					if (ed[j].e==x2) ed[j].k=0;
				for (j=a[x2];j;j=ed[j].next)
					if (ed[j].e==x1) ed[j].k=0;
				dp(x1,++t);ans1=f[x1][0];
				dp(x2,++t);ans1=max(ans1,f[x2][0]);
				ans+=ans1;
			}
			else
			{
				dp(i,++t);
				ans+=max(f[i][0],f[i][1]);
			}
		}
	printf("%I64d",ans);
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值