bzoj 3037(树形DP)

3037: 创世纪

Time Limit: 5 Sec   Memory Limit: 128 MB
Submit: 214   Solved: 97
[ Submit][ Status][ Discuss]

Description

applepi手里有一本书《创世纪》,里面记录了这样一个故事……
上帝手中有着N 种被称作“世界元素”的东西,现在他要把它们中的一部分投放到一个新的空间中去以建造世界。每种世界元素都可以限制另外一种世界元素,所以说上帝希望所有被投放的世界元素都有至少一个没有被投放的世界元素能够限制它,这样上帝就可以保持对世界的控制。
由于那个著名的有关于上帝能不能制造一块连自己都不能举起的大石头的二律背反命题,我们知道上帝不是万能的,而且不但不是万能的,他甚至有事情需要找你帮忙——上帝希望知道他最多可以投放多少种世界元素,但是他只会O(2^N) 级别的算法。虽然上帝拥有无限多的时间,但是他也是个急性子。你需要帮助上帝解决这个问题。

Input

第一行是一个整数N,表示世界元素的数目。
第二行有 N 个整数A1, A2, …, AN。Ai 表示第i 个世界元素能够限制的世界元素的编号。

Output

一个整数,表示最多可以投放的世界元素的数目。

Sample Input

6
2 3 1 3 6 5

Sample Output

3

HINT

样例说明

选择2、3、5 三个世界元素即可。分别有1、4、6 来限制它们。


数据范围与约定

对于30% 的数据,N≤10。

对于60% 的数据, N≤10^5。

对于 100% 的数据,N≤10^6,1≤Ai≤N,Ai≠i。



解题思路:
  涨姿势了。。。
  首先N个点,每个点一条边。是基环图。

  对于求最值得可以用树形DP,而求方案数的用树分治。

 这道题可以先将环中的一条边切断,然分两种情况,一个是分开的点取,和不取。然后用DP求类似最小支配集。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int n,len,p,bianjie;
int to[1100000];
int next[1100000];
int h[1100000],vis[1100000],a[1100000];
int f[1100000],g[1100000];


inline int read()
 {
  char y;int x=0,f=1; y=getchar();
  while (y<'0' || y>'9') {if (y=='-') f=-1; y=getchar();}
while (y>='0'&& y<='9') {x=x*10+int(y)-48; y=getchar();}
return x*f;
 }
 
void insert(int x,int y)
 {
  ++len;
  to[len]=y; next[len]=h[x]; h[x]=len; 
 }


void dfs(int now)
 {
  vis[now]=1;
  if (vis[a[now]])
  {
  p=now;
}else 
  dfs(a[now]);
 }


void solve(int now,int fa)
 {
  f[now]=1; g[now]=1000000000; vis[now]=1;
  if (now==bianjie)
  {
       g[now]=0;
}
int u=h[now];
while (u!=0)
{
if (to[u]!=fa && to[u]!=p)
{
solve(to[u],now);
  g[now]+=min(f[to[u]],g[to[u]]);
g[now]=min(g[now],f[now]+f[to[u]]-1);
f[now]+=min(f[to[u]],g[to[u]]);
}
u=next[u];
}
 }


int main()
{
n=read();
for (int i=1;i<=n;++i)
{
a[i]=read(); insert(a[i],i);
}
long long ans=0;
for (int i=1;i<=n;++i)
if (!vis[i])
{
   dfs(i);
   bianjie=a[p]; 
   solve(p,0);
        int temp=f[p];
   bianjie=0;
   solve(p,0);
   ans+=min(temp,g[p]); 
}
printf("%d",n-ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值