[BZOJ1912]APIO2010巡逻|树的直径

    这题看完大概的做法也想到了。。就是找出两条最长的路径连成环嘛。。但是不能简单的这样考虑,因为找次长的时候并不是不能走最长的路径上的边,只是走了第一次就等于白走了,也就是不仅没有产生新的贡献反而抵消了第一次的贡献。。根据这个思路,K=1的时候直接找出一条最长路径len,答案即为2*(n-1)-len+1K=2时,据前面的分析,把所有最长路径上的边权改为-1(双向!!),然后再求最长,答案即为2*(n-1)-len1+1-len2+1。。求最长我一开始想的就是一遍DFS维护最长次长子路径就能搞,但是想起NOIP做过一道是直接两遍DFS,就做了两遍。。后来发现做两遍的方法当有负权边的时候是不可行的,然后就换成第一种了。。

#include<cstdio>
#include<iostream>
#include<memory.h>
#define N 100005
#define clr(a) memset(a,0,sizeof(a))
using namespace std;
struct edge{
	int e,q,next;
} ed[N*2];
int n,k,s,e,i,ne=1,len,ans,a[N],d[N],son[N][2];
void add(int s,int e)
{
	ed[++ne].e=e;ed[ne].q=1;
	ed[ne].next=a[s];a[s]=ne;
}
int dfs(int x,int fa)
{
	int j,to,k,max1=0,max2=0;
	son[x][0]=son[x][1]=-1;
	for (j=a[x];j;j=ed[j].next)
		if ((to=ed[j].e)!=fa)
		{
			d[to]=d[x]+ed[j].q;
			k=dfs(to,x)+ed[j].q;
			if (k>max1) 
			{
				son[x][1]=son[x][0];
				son[x][0]=j;
				max2=max1;
				max1=k;
				if (max1+max2>len) len=max1+max2,s=x;
			}
			else if (k>max2)
			{
				son[x][1]=j;
				max2=k;
				if (max1+max2>len) len=max1+max2,s=x;
			}
		}
	return max1;	
}
int main()
{
	freopen("1912.in","r",stdin);
//	freopen("my.out","w",stdout);
	scanf("%d%d",&n,&k);
	clr(a);
	for (i=1;i<n;i++)
	{
		scanf("%d%d",&s,&e);
		add(s,e);add(e,s);
	}
	d[1]=0;len=1;
	s=0;son[0][1]=son[0][0]=-1;
	dfs(1,0);
	ans=2*n-2;
	ans-=len-1;
	if (k==2)
	{
		for(i=son[s][0];i!=-1;i=son[ed[i].e][0]) ed[i].q=ed[i^1].q=-1;
		for(i=son[s][1];i!=-1;i=son[ed[i].e][0]) ed[i].q=ed[i^1].q=-1;
		d[e]=0;len=1;
		dfs(e,0);
		ans-=len-1;
	} 	
	printf("%d\n",ans);
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值