[BZOJ3224]普通平衡树

模板题嘛。。

splay:

#include<iostream>
#include<cstdio>
#include<memory.h>
#define maxn 500005
using namespace std;
int i,n,opt,x,nd=0,ans,root=0,c[maxn][2],size[maxn],pre[maxn],same[maxn],num[maxn];
void update(int x){size[x]=size[c[x][0]]+size[c[x][1]]+same[x];}
void newnode(int &x,int fa,int k)
{
	x=++nd;pre[x]=fa;
	size[x]=same[x]=1;
	c[x][0]=c[x][1]=0;
	num[x]=k;
}
void rot(int x,int kind)
{
	int y=pre[x],z=pre[y];
	c[y][!kind]=c[x][kind];pre[c[x][kind]]=y;
	c[x][kind]=y;pre[y]=x;
	pre[x]=z;if (z) c[z][c[z][1]==y]=x;
	update(y);update(x);
}
void splay(int x,int goal)
{
	int kind,y,z;
	while (pre[x]!=goal)
	{
		y=pre[x];
		if (pre[y]==goal) rot(x,c[y][0]==x);
		else
		{
			z=pre[y];kind=c[z][0]==y;
			if (c[y][kind]==x) rot(x,!kind);else rot(y,kind);
			rot(x,kind);
		}
	}
	if (goal==0) root=x;
}
void ins(int k)
{
	int get=root;
	if (!root) newnode(root,0,k);
	if (num[get]==k){same[get]++;size[get]++;return;}
	while (c[get][num[get]<k])
	{
		get=c[get][num[get]<k];
		if (num[get]==k){same[get]++;size[get]++;splay(get,0);return;}
	}
	newnode(c[get][num[get]<k],get,k);
	splay(c[get][num[get]<k],0);
}
void find(int x,int k)
{
	if (num[x]==k) {splay(x,0);return;}else find(c[x][num[x]<k],k);
}
int join(int s1,int s2)
{
	while (c[s1][1]) s1=c[s1][1];
	splay(s1,pre[s2]);
	c[s1][1]=s2;pre[s2]=s1;
	update(s1);return s1;
}
void del(int k)
{
	find(root,k);
	if (c[root][0]*c[root][1]==0) {root=c[root][0]+c[root][1];return;}
	root=join(c[root][0],c[root][1]);
}
int rank(int x,int k)
{
	if (num[x]==k) return size[c[x][0]]+1;
	if (num[x]>k) return rank(c[x][0],k);else return rank(c[x][1],k)+size[c[x][0]]+same[x];
}
int findkth(int x,int k)
{
	if (size[c[x][0]]>=k) return findkth(c[x][0],k);
	if (size[c[x][0]]+same[x]>=k) return num[x];
	return findkth(c[x][1],k-size[c[x][0]]-same[x]);
}
void getpre(int x,int k)
{
	if (!x) return;
	if (num[x]<k){ans=x;getpre(c[x][1],k);}else getpre(c[x][0],k);
}
void getpos(int x,int k)
{
	if (!x) return;
	if (num[x]>k){ans=x;getpre(c[x][0],k);}else getpre(c[x][1],k);
}
int main()
{
	scanf("%d",&n);
	for (i=1;i<=n;i++)
	{
		scanf("%d%d",&opt,&x);
		switch(opt)
		{
			case 1:ins(x);break;
			case 2:del(x);break;
			case 3:printf("%d\n",rank(root,x));break;
			case 4:printf("%d\n",findkth(root,x));break;
			case 5:getpre(root,x);printf("%d\n",num[ans]);break;
			case 6:getpos(root,x);printf("%d\n",num[ans]);break;
		}
	}
}

treap:

#include<iostream>
#include<cstdio>
#include<memory.h>
#include<cstdlib>
#include<time.h>
#define maxn 500005
using namespace std;
int i,n,opt,x,nd=0,ans,root=0,c[maxn][2],size[maxn],same[maxn],fix[maxn],num[maxn];
void update(int x){size[x]=size[c[x][0]]+size[c[x][1]]+same[x];}
void newnode(int &x,int k)
{
	x=++nd;c[x][0]=c[x][1]=0;
	size[x]=same[x]=1;
	fix[x]=rand();num[x]=k;
}
void rot(int &x,int kind)
{
	int t=c[x][!kind];
	c[x][!kind]=c[t][kind];c[t][kind]=x;
	update(x);update(t);x=t;
}
void ins(int &x,int k)
{
	if (!x) {newnode(x,k);return;}
	size[x]++;
	if (num[x]==k) {same[x]++;return;}
	ins(c[x][num[x]<k],k);
	if (fix[c[x][num[x]<k]]<fix[x]) rot(x,!(num[x]<k));
}
void del(int &x,int k)
{
	if (num[x]==k)
	{
		if (same[x]>1) {size[x]--,same[x]--;return;}
		if (c[x][0]*c[x][1]==0) {x=c[x][0]+c[x][1];return;}
		rot(x,fix[c[x][0]]<fix[c[x][1]]);del(x,k);
	}
	else size[x]--,del(c[x][num[x]<k],k);
}
int rank(int x,int k)
{
	if (num[x]==k) return size[c[x][0]]+1;
	if (num[x]>k) return rank(c[x][0],k);else return rank(c[x][1],k)+size[c[x][0]]+same[x];
}
int findkth(int x,int k)
{
	if (size[c[x][0]]>=k) return findkth(c[x][0],k);
	if (size[c[x][0]]+same[x]>=k) return num[x];
	return findkth(c[x][1],k-size[c[x][0]]-same[x]);
}
void getpre(int x,int k)
{
	if (!x) return;
	if (num[x]<k) {ans=x;getpre(c[x][1],k);} else getpre(c[x][0],k);
}
void getpos(int x,int k)
{
	if (!x) return;
	if (num[x]>k) {ans=x;getpos(c[x][0],k);} else getpos(c[x][1],k);
}
int main() 
{
	srand((unsigned)time(0));
	scanf("%d",&n);
	for (i=1;i<=n;i++)
	{
		scanf("%d%d",&opt,&x);
		switch(opt)
		{
			case 1:ins(root,x);break;
			case 2:del(root,x);break;
			case 3:printf("%d\n",rank(root,x));break;
			case 4:printf("%d\n",findkth(root,x));break;
			case 5:getpre(root,x);printf("%d\n",num[ans]);break;
			case 6:getpos(root,x);printf("%d\n",num[ans]);break;
		}
	}
}


内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值