Java中的司机抢单实现:并发问题与解决方案


在共享经济和出行服务的背景下, 抢单 成为了司机端应用中至关重要的功能之一。为了提高用户体验,确保系统能够高效、准确地处理抢单请求,必须解决在高并发场景下可能出现的数据不一致问题。本文将带大家一起探讨如何在 Java 中实现司机抢单逻辑,并介绍解决并发问题的方案。

一、司机抢单的基础实现

我们首先来看一个基本的抢单逻辑实现。这个版本通过 Redis 缓存减少对数据库的压力,并对订单状态进行更新。

@Override
public Boolean robNewOrder(Long driverId, Long orderId) {
    // 1. 判断订单是否存在,通过Redis,减少数据库压力
    String redisKey = RedisConstant.ORDER_ACCEPT_MARK + orderId;
    if (Boolean.FALSE.equals(redisTemplate.hasKey(redisKey))) {
        // 如果Redis中没有订单,表示该订单已被抢走,抛出异常
        throw new GuiguException(ResultCodeEnum.COB_NEW_ORDER_FAIL);
    }

    // 2. 司机抢单,修改订单状态为“已接单”
    LambdaQueryWrapper<OrderInfo> wrapper = new LambdaQueryWrapper<>();
    wrapper.eq(OrderInfo::getId, orderId);
    OrderInfo orderInfo = orderInfoMapper.selectOne(wrapper);
    orderInfo.setStatus(OrderStatus.ACCEPTED.getStatus());
    orderInfo.setDriverId(driverId);
    orderInfo.setAcceptTime(new Date());

    // 3. 更新订单状态
    int rows = orderInfoMapper.updateById(orderInfo);
    if (rows != 1) {
        // 更新失败,抛出异常
        throw new GuiguException(ResultCodeEnum.COB_NEW_ORDER_FAIL);
    }

    // 4. 删除Redis中的标识
    redisTemplate.delete(redisKey);
    return true;
}

解析:

  1. 订单存在性检查:通过 Redis 来判断订单是否可被抢,减少了直接访问数据库的开销。使用 Redis 的好处在于其高性能和快速响应,适合用于高并发场景。
  2. 订单状态更新:通过数据库操作将订单状态修改为“已接单”。
  3. Redis标志删除:抢单成功后,删除订单在 Redis 中的标记,确保其他司机无法再次抢单。

这种实现方法在普通业务场景下足够有效,但在高并发情况下,多个司机同时抢同一个订单时,可能会出现 数据竞争 问题,导致订单被多次更新。

二、并发问题:如何解决多司机同时抢单?

在高并发情况下,多个司机可能会同时尝试抢同一个订单。此时,如果不加控制,可能会导致 订单状态 在短时间内被多个司机同时修改,最终导致 数据不一致。为了解决这个问题,我们可以引入 乐观锁

三、通过乐观锁解决并发问题

乐观锁 的设计思路是,在更新数据时,检查记录是否在此期间被其他请求修改。如果数据状态发生了变化,更新操作将失败,这样可以避免多个司机同时抢单导致的竞态问题。

@Override
public Boolean robNewOrder1(Long driverId, Long orderId) {
    // 1. 判断订单是否存在,通过Redis减少数据库压力
    String redisKey = RedisConstant.ORDER_ACCEPT_MARK + orderId;
    if (Boolean.FALSE.equals(redisTemplate.hasKey(redisKey))) {
        throw new GuiguException(ResultCodeEnum.COB_NEW_ORDER_FAIL);
    }

    // 2. 司机抢单,修改订单状态为“已接单”,使用乐观锁
    LambdaQueryWrapper<OrderInfo> wrapper = new LambdaQueryWrapper<>();
    wrapper.eq(OrderInfo::getId, orderId);
    wrapper.eq(OrderInfo::getStatus, OrderStatus.WAITING_ACCEPT.getStatus()); // 仅允许状态为“等待接单”的订单

    // 创建一个新的订单对象,只更新需要的字段
    OrderInfo orderInfo = new OrderInfo();
    orderInfo.setStatus(OrderStatus.ACCEPTED.getStatus());
    orderInfo.setDriverId(driverId);
    orderInfo.setAcceptTime(new Date());

    // 3. 更新订单信息(乐观锁确保订单状态没有被其他请求修改)
    int rows = orderInfoMapper.update(orderInfo, wrapper);
    if (rows != 1) {
        // 更新失败,表示订单状态已经被其他司机抢走
        throw new GuiguException(ResultCodeEnum.COB_NEW_ORDER_FAIL);
    }

    // 4. 删除Redis中的标志,防止其他司机重复抢单
    redisTemplate.delete(redisKey);
    return true;
}

改进点:

  1. 状态判断:在修改订单之前,增加了订单状态的条件判断,确保只有状态为“等待接单”的订单才能被更新。如果多个司机同时抢同一个订单,只有一个抢单请求会成功更新状态,其他请求会因为订单状态变化而失败。
  2. 乐观锁机制:通过在更新时检查订单状态的方式实现了乐观锁。在高并发场景下,这种机制能够有效防止订单被多次抢单,确保订单状态更新的安全性。

四、Redis分布式锁的进一步优化

尽管乐观锁可以在多数场景下解决并发问题,但如果并发量极高,可能仍存在极少数的边界问题。例如,多个请求几乎同时执行状态检查,虽然乐观锁能减少问题发生的概率,但仍无法彻底解决 竞态条件

为此,我们可以引入 Redis分布式锁 来进一步增强并发控制。在抢单操作开始时,为订单加上分布式锁,确保同一时间只有一个司机能够执行抢单操作。

// 1. 尝试获取分布式锁
Boolean lock = redisTemplate.opsForValue().setIfAbsent(redisKey, driverId, 10, TimeUnit.SECONDS);
if (Boolean.FALSE.equals(lock)) {
    throw new GuiguException(ResultCodeEnum.COB_NEW_ORDER_FAIL); // 其他司机已抢单
}

// 2. 执行抢单逻辑...

// 3. 释放锁
redisTemplate.delete(redisKey);

分布式锁优势:

  • 保证在抢单过程中,只有一个线程可以执行订单更新操作,彻底杜绝并发问题。
  • 锁的设置有过期时间,避免因异常未释放锁而导致订单无法处理。

五、总结

抢单作为出行服务中的重要环节,涉及到高并发情况下的数据一致性问题。通过基础的抢单实现,我们能够理解如何利用 Redis 缓存提升系统性能。但在高并发场景下,需要引入 乐观锁分布式锁 机制,来确保订单状态更新的安全性和准确性。

通过合理的锁机制设计,我们不仅可以提升系统的并发处理能力,还能够保证 数据一致性,从而为用户提供流畅、稳定的抢单体验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Takumilovexu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值