【PaperReading】T-GSA: TRANSFORMER WITH GAUSSIAN-WEIGHTED SELF-ATTENTION FOR SPEECH ENHANCEMENT

本文介绍了名为T-GSA的自监督语音预训练方法,利用多目标辅助任务在大量未标记的语音上预训练Transformer编码器。TERA通过改进表面特征,在多个任务上表现出强大性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Title:T-GSA: TRANSFORMER WITH GAUSSIAN-WEIGHTED SELF-ATTENTION FOR SPEECH ENHANCEMENT
  • What’s main claim? Key idea?

    This paper introduces a self-supervised speech pre-training method called TERA. The authors use a multi-target auxiliary task to pre-train Transformer Encoders on a large amount of unlabeled speech. And TERA achieved strong performance on many tasks by improving upon surface features.

  • Is there code available? Data?

    code: https://github.com/andi611/Self-Supervised-Speech-Pretraining-and-Representation-Learning

    data: LibriSpeech and TIMIT

  • Is the idea neat? Is it counter-intuitive?

    I think it’s a neat idea. Self-supervised learning has emerged as an attractive approach to leverage knowledge from a large amount of unlabeled data. This paper int

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值