NEFU大一暑假集训-KMP

题集链接

OP

感谢学长的讲解与付出;
感谢ph和zsl两位大佬的指导与讨论;

KMP可以在线性复杂度内求出给定字符串任意前 i 个元素构成字串的最长相等前后缀,并可以以此进一步进行字串匹配其他相等前后缀的求取;

A 剪花布条

题目大意

给定待测串和标准串,求待测串中有几个互不重复的标准串;

思路

KMP字串匹配板,KMP本身即是求取互不重复的标准串个数;

代码
#include <stdio.h>
#include <iostream>
#include <stack>
#include <vector>
#include <algorithm>
#include <string.h>
using namespace std;
#pragma GCC optimize(2)
typedef long long ll;
typedef int itn;
typedef unsigned long long ull;

char A[1010],B[1010];
int nxt[1010],n,m,ans;
void pre()
{
    nxt[1]=0;
    int j=0;
    for(int i=1;i<m;i++)
    {
        while(j>0&&B[j+1]!=B[i+1])
        {
            j=nxt[j];
        }
        if(B[j+1]==B[i+1])j++;
        nxt[i+1]=j;
    }
}

void kmp()
{
    int j=0;
    for(int i=0;i<n;i++)
    {
        while(j>0&&B[j+1]!=A[i+1])
        {
            j=nxt[j];
        }
        if(B[j+1]==A[i+1])j++;
        if(j==m)
        {
            ans++;
            j=0;
        }
    }
}
int main()
{
    while(cin>>A+1)
    {
        if(!strcmp(A+1,"#"))break;
        cin>>B+1;
        n=strlen(A+1);
        m=strlen(B+1);
        ans=0;
        pre();
        kmp();
        printf("%d\n",ans);
    }
}

B Power Strings

题目大意

给定串是由几个相同字符串首尾相接拼出来的,求出最大个数;

思路

我们先分情况讨论:
假定给定串长度为 m ;

  1.   2 ⋅ n x t [ m ] < m \text{ }2\cdotp nxt[m]\lt m  2nxt[m]<m ,此时显然没有满足条件的串,故答案为1;
  2.   2 ⋅ n x t [ m ] ⩾ m \text{ }2\cdotp nxt[m]\geqslant m  2nxt[m]m ,此时可能的串是 [ 1 , m − n x t [ m ] ] [1,m-nxt[m]] [1,mnxt[m]] ,即可以保证给定串是若干个可行串首尾相接组成串的前缀,下一步只需要判断给定串与可行串长度有没有整除关系即可;

接下来对两种情况进行合并,满足第一种情况时,两串长度一定不存在整除关系;

代码
#include <stdio.h>
#include <iostream>
#include <stack>
#include <vector>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
#pragma GCC optimize(2)
typedef long long ll;
typedef int itn;
typedef unsigned long long ull;

char A[1010], B[1000006];
int nxt[1000006], n, m, ans;
void pre()
{
    nxt[1] = 0;
    int j = 0;
    for (int i = 1; i < m; i++)
    {
        while (j > 0 && B[j + 1] != B[i + 1])
        {
            j = nxt[j];
        }
        if (B[j + 1] == B[i + 1])
            j++;
        nxt[i + 1] = j;
    }
}

void kmp()
{
    int j = 0;
    for (int i = 0; i < n; i++)
    {
        while (j > 0 && B[j + 1] != A[i + 1])
        {
            j = nxt[j];
        }
        if (B[j + 1] == A[i + 1])
            j++;
        if (j == m)
        {
            ans++;
            j = 0;
        }
    }
}

int main()
{
    while (~scanf("%s",B+1))
    {
        if(!strcmp(B+1,"."))break;
        m = strlen(B + 1);
        pre();
        printf("%d\n", (m%(m - nxt[m])==0)?m/(m - nxt[m]):1);
    }
}

C Radio Transmission

题目大意

给你一个字符串,它是由某个字符串不断自我连接形成的。但是这个字符串是不确定的,现在只想知道它的最短长度是多少。

思路

和上一题基本相同,求出可行串长度即可;

代码
#include <stdio.h>
#include <iostream>
#include <stack>
#include <vector>
#include <algorithm>
#include <string.h>
using namespace std;
#pragma GCC optimize(2)
typedef long long ll;
typedef int itn;
typedef unsigned long long ull;

char A[1010],B[1000006];
int nxt[1000006],n,m,ans;
void pre()
{
    nxt[1]=0;
    int j=0;
    for(int i=1;i<m;i++)
    {
        while(j>0&&B[j+1]!=B[i+1])
        {
            j=nxt[j];
        }
        if(B[j+1]==B[i+1])j++;
        nxt[i+1]=j;
    }
}

void kmp()
{
    int j=0;
    for(int i=0;i<n;i++)
    {
        while(j>0&&B[j+1]!=A[i+1])
        {
            j=nxt[j];
        }
        if(B[j+1]==A[i+1])j++;
        if(j==m)
        {
            ans++;
            j=0;
        }
    }
}

int main()
{
   cin>>m;
   cin>>B+1;
   pre();
   printf("%d",m-nxt[m]);
}

D OKR-Periods of Words

参考

题目大意

对于给定的字符串t,找到它所有前缀字串的最长周期的长度的和。

思路

根据题目中周期的定义,我们只需要求出每个串的最短相同前后缀的长度,总长减去该长度即为该串的周期长;

同时需要用路径压缩优化;

代码
#include <stdio.h>
#include <iostream>
#include <stack>
#include <vector>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
#pragma GCC optimize(2)
typedef long long ll;
typedef int itn;
typedef unsigned long long ull;

char A[1010], B[1000006];
int nxt[1000006], n, m, ans;
void pre()
{
    nxt[1] = 0;
    int j = 0;
    for (int i = 1; i < m; i++)
    {
        while (j > 0 && B[j + 1] != B[i + 1])
        {
            j = nxt[j];
        }
        if (B[j + 1] == B[i + 1])
            j++;
        nxt[i + 1] = j;
    }
}

void kmp()
{
    int j = 0;
    for (int i = 0; i < n; i++)
    {
        while (j > 0 && B[j + 1] != A[i + 1])
        {
            j = nxt[j];
        }
        if (B[j + 1] == A[i + 1])
            j++;
        if (j == m)
        {
            ans++;
            j = 0;
        }
    }
}

int main()
{
    cin>>m;
    cin>>B+1;
    pre();
    ll ans=0;
    for(int i=1;i<=m;i++)
    {
        int now=i;
        while(nxt[now])now=nxt[now];//,printf("*");;
        if(nxt[i])nxt[i]=now;
        ans+=i-now;
    }
    cout<<ans;
}

E 似乎在梦中见过的样子

题目大意

所有形似于 A+B+A 的字串都是 QB 或它的替身,且 |A|≥k,|B|≥1 (位置不同其他性质相同的子串算不同子串,位置相同但拆分不同的子串算同一子串),对于给定串和给定 k ,求出其替身数量;

思路

实际上是 O ( n 2 ) O(n^2) O(n2) 复杂度;

对于每一个后缀串进行kmp,并遍历每个后缀串的所有前缀,以遍历所有字串;

对于每个子串,假设其某相等前后缀长度为 h ,字串长度为 l,找到其是否有同时满足 h ⩾ k , 2 ⋅ h + 1 ⩽ l h\geqslant k,2\cdotp h+1\leqslant l hk,2h+1l 的相等前后缀;

代码
#include <stdio.h>
#include <iostream>
#include <stack>
#include <vector>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
#pragma GCC optimize(2)
typedef long long ll;
typedef int itn;
typedef unsigned long long ull;

char A[1010], B[1000006];
int nxt[1000006], n, m, ans;
void pre()
{
    nxt[1] = 0;
    int j = 0;
    for (int i = 1; i < m; i++)
    {
        while (j > 0 && B[j + 1] != B[i + 1])
        {
            j = nxt[j];
        }
        if (B[j + 1] == B[i + 1])
            j++;
        nxt[i + 1] = j;
    }
}

void kmp()
{
    int j = 0;
    for (int i = 0; i < n; i++)
    {
        while (j > 0 && B[j + 1] != A[i + 1])
        {
            j = nxt[j];
        }
        if (B[j + 1] == A[i + 1])
            j++;
        if (j == m)
        {
            ans++;
            j = 0;
        }
    }
}

int main()
{
    //cin>>m;
    cin >> B + 1;
    m = strlen(B + 1);
    int k;
    cin >> k;
    ll ans = 0;
    for (; m >= 2 * k + 1; m--)
    {
        pre();
        for (int i = 1; i <= m; i++)
        {
            //printf("%c",B[i]);
            B[i] = B[i + 1];
            int now = i;
            while (nxt[now] >= k)
            {
                if (2 * nxt[now] + 1 <= i)
                {
                    ans++;
                    break;
                }
                now = nxt[now];
            }
        }
    }
    cout << ans;
}

F Censoring

题目大意

给出两个字符串 S 和 T,每次从前往后找到 S 的一个子串 A=T 并将其删除,空缺位依次向前补齐,重复上述操作多次,直到 S 串中不含 T 串。输出最终的 S 串。

思路

最终用数组模拟栈和字符串哈希完成的;

持续对比栈的后缀和下一个字符串前缀的哈希值,如果有相等的,则将栈顶的重合元素弹出;

代码
#include <stdio.h>
#include <iostream>
#include <stack>
#include <vector>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
typedef long long ll;
typedef int itn;
typedef unsigned long long ull;

const int N = 1e6 + 6;
const ll mod = 1e9 + 3, base = 1321;
int s[N], p[N] = {1}, tmp;
int top, len;
char a[N], b[N], c[N];
ll get(int l, int r) { return ((ll)s[r] - (ll)s[l - 1] * p[r - l + 1] + mod*mod) % mod; }
int main()
{
    for (int i = 1; i < N; i++)
        p[i] = (ll)p[i - 1] * base % mod;
    cin >> a + 1;
    cin >> b + 1;
    for (int i = 1; b[i]; i++)
        tmp = (tmp * base + b[i]) % mod, len++;
    for (int i = 1; a[i]; i++)
    {
        s[top + 1] = (s[top] * base + a[i]) % mod;
        c[++top] = a[i];
        if (top >= len && get(top - len + 1, top) == tmp)
            top = top - len;
        //printf("%lld %lld\n",get(top - len + 1, top),  tmp);
    }
    for (int i = 1; i <= top; i++)
        printf("%c", c[i]);
    return 0;
}

G Compress Words

题目大意

样例解释得很明白,不过要强调一点:即先合并前两个单词,然后将结果与第三个单词合并,依此类推

思路

维护ans串;
对于每个新单词,截取ans串的适当后缀和该新单词组成临时串,对临时串kmp,判断是否公共前后缀,该缀即为重复部分;

有时候公共前后缀的长度可能超过预期,此时即需要特判;

代码
#include <stdio.h>
#include <iostream>
#include <stack>
#include <vector>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
#pragma GCC optimize(2)
typedef long long ll;
typedef int itn;
typedef unsigned long long ull;

string A,B;
int nxt[1000006], n, m;
void pre()
{
    nxt[1] = 0;
    int j = 0;
    for (int i = 1; i < m; i++)
    {
        while (j > 0 && B[j + 1] != B[i + 1])
        {
            j = nxt[j];
        }
        if (B[j + 1] == B[i + 1])
            j++;
        nxt[i + 1] = j;
    }
}

void kmp()
{
    int j = 0;
    for (int i = 0; i < n; i++)
    {
        while (j > 0 && B[j + 1] != A[i + 1])
        {
            j = nxt[j];
        }
        if (B[j + 1] == A[i + 1])
            j++;
        if (j == m)
        {
            //ans++;
            j = 0;
        }
    }
}
string g[100005],ans;
int main()
{
    int k;
    cin>>k;
    for(int i=1;i<=k;i++)cin>>g[i];
    ans=g[1];
    for(int i=2;i<=k;i++)
    {
        B=' '+g[i]+ans.substr(max(0,(int)(ans.length()-g[i].length())));
        m=B.length()-1;
        pre();
        int now=m;
        while(nxt[now]>min(ans.length(),g[i].length())&&nxt[m])now=nxt[now];
        ans+=g[i].substr(nxt[now]);
    }
    cout << ans;
}

H 动物园

思路

这道题比较像E的单次循环,但是E的数据非常水,导致 O ( n 2 ) + O(n^2)+ O(n2)+暴力递归也能过;

这道题卡得就比较严了,需要更优的策略;

定义 n x [ i ] nx[i] nx[i]为长度小于等于i/2的最长公共前后缀;
如果要求取 n x [ i ] nx[i] nx[i],我们可以按照求取 n e x t [ i ] next[i] next[i]的类似思路进行,只不过最后判断是否大于i/2即可;

那么还需要求取的是 n u m [ i ] num[i] num[i]
如果 n e x t [ i ] = j next[i]=j next[i]=j,那么显然 n u m [ i ] = n u m [ j ] + 1 num[i]=num[j]+1 num[i]=num[j]+1

在计算ans时,我们需要乘上 n u m [ n x [ i ] ] + 1 num[nx[i]]+1 num[nx[i]]+1

由于nx值的缩减过程也是按照next迭代的,所以在下面代码中,上文的 n x nx nx没有被存下;
此外 n e x t next next为nx, n u m num num为sz;

代码中, s z [ i ] sz[i] sz[i]代表i长度的公共前后缀内的公共前后缀数+1,即 n x [ i ] = j nx[i]=j nx[i]=j时, n u m [ i ] = s z [ j ] num[i]=sz[j] num[i]=sz[j]

代码
#include <iostream>
#include <algorithm>
#include <string.h>
#include <math.h>
#include <map>
#include <vector>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int N = 1e6+6;
const int M = 1e9 + 7;
int n;
int nt[N], sz[N];
char a[N];
int main()
{
    int t;
    cin >> t;
    while (t--)
    {
        ll ans = 1;
        scanf("%s", a + 1);
        int n = strlen(a + 1);
        sz[1]=1;
        for (int i = 2, j = 0; i <= n; i++) {
            while (j && a[i] != a[j + 1]) j = nt[j];
            if (a[i] == a[j + 1]) j++;
            nt[i] = j;
            sz[i] = sz[nt[i]] + 1;
        }
        for (int i = 1, j = 0; i <= n; i++) {
            while (j && a[j + 1] != a[i]) j = nt[j];
            if (a[j + 1] == a[i]) j++;
            while (j * 2 > i) j = nt[j];
            ans = ans * (sz[j] + 1) % M;
        }
        printf("%lld\n", ans);
        /* for(int i=1;i<=n;i++)printf("%d ",nt[i]);
        printf("\n"); */
    }
}

I Sza-Template

KMP+DP

思路

参考
假设 f ( i ) f(i) f(i)为给定串长度为 i 的前缀的答案;

则有 f ( i ) = i 或 f [ n x [ i ] ] f(i)=i或f[nx[i]] f(i)=if[nx[i]],具体证明详见上链;

在存在 j 满足 f ( j ) = f ( n x [ i ] ) 且 j + n x [ i ] ⩽ i f(j)=f(nx[i])且j+nx[i]\leqslant i f(j)=f(nx[i])j+nx[i]i时, f ( i ) = f ( n x [ i ] ) f(i)=f(nx[i]) f(i)=f(nx[i])
具体判断可以用桶实现;

代码
#include <iostream>
#include <algorithm>
#include <string.h>
#include <math.h>
#include <map>
#include <vector>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int N = 5e5+5;
const int M = 998244353;
int n;
int nx[N];
int f[N],h[N];
char s[N];
int main()
{
    scanf("%s",s+1); n=strlen(s+1);
	nx[0]=-1;
	for(int i=2,j=0; i<=n; ++i)
	{
		while(j!=-1&&s[j+1]!=s[i]) j=nx[j];
		nx[i]=++j;
	}
	f[1]=1;
	for(int i=2; i<=n; ++i)
	{
		f[i]=i;
		if(h[f[nx[i]]]>=i-nx[i]) f[i]=f[nx[i]];
		h[f[i]]=i;
	}
    printf("%d",f[n]);
}

ED

\

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值