[hdu6057]Kanade‘s convolution

Kanade’s convolution

题解

多简单的一道题呀

我们可以考虑子集求和。毕竟这种又是位运算又是相乘的很容易想到FWT。
由于 ( x    x o r    y ) + ( x    a n d    y ) = ( x    o r    y ) (x\,\,xor\,\,y)+(x\,\,and\,\,y)=(x\,\,or\,\,y) (xxory)+(xandy)=(xory),所以我们我们可以将枚举的 i , j i,j i,j改为 x , y x,y x,y使得 x = i    o r    j , y = i    x o r    j x=i\,\,or\,\,j,y=i\,\,xor\,\,j x=iorj,y=ixorj
但是由于我们枚举的 x , y x,y x,y的出现次数是不一样的,所以还要针对的 y y y加上一个 2 b i t ( y ) 2^{bit(y)} 2bit(y)的系数。
原式变成了 C x − y = ∑ x    a n d    y = y 2 b i t ( y ) A y B x C_{x-y}=\sum_{x\,\,and\,\,y=y}2^{bit(y)}A_{y}B_{x} Cxy=xandy=y2bit(y)AyBx
上式明显可以再把 [ x    a n d    y = y ] [x\,\,and\,\,y=y] [xandy=y]这个条件去掉,根据二进制位来求解,用 k k k来代替 x − y x-y xy,因为这一位是需要我们枚举的,可化为 C k = ∑ b i t ( x ) − b i t ( y ) = b i t ( k ) 2 b i t ( y ) A y B x C_{k}=\sum_{bit(x)-bit(y)=bit(k)}2^{bit(y)}A_{y}B_{x} Ck=bit(x)bit(y)=bit(k)2bit(y)AyBx。这样就可以卷积了。

我们可以先将 2 b i t ( y ) 2^{bit(y)} 2bit(y)乘入 A y A_{y} Ay中,因为它只与 y y y的大小有关。
我们可以采用子集卷积的方法,将 A , B , C A,B,C A,B,C三个多项式根据它们二进制下含1的个数分类,用 F ( A , i ) F(A,i) F(A,i)表示 A A A中二进制的含1个数为 i i i的部分。
有, F ( A , i ) = ∑ j = 0 i F ( B , j ) F ( A , i − j ) F(A,i)=\sum_{j=0}^{i}F(B,j)F(A,i-j) F(A,i)=j=0iF(B,j)F(A,ij)
这明显是可以根据FWT处理的,FWT后相乘再逆回来即可。

时间复杂度为 O ( n l o g 2   n ) O\left(nlog^2\,n\right) O(nlog2n)
PS:应该没有人跟我最开始想的一样,先通过二元方程进行转化后跑多项式乘法,最后再解回来的吧。

源码

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN (1<<19)+5
#define reg register
typedef long long LL;
const int mo=998244353;
const int inv2=499122177;
template<typename _T>
inline void read(_T &x){
	_T f=1;x=0;char s=getchar();
	while('0'>s||'9'<s){if(s=='-')f=-1;s=getchar();}
	while('0'<=s&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}
	x*=f;
}
int add(const int x,const int y){return x+y<mo?x+y:x+y-mo;}
void FWT(int *A,const int lim,const int typ){
	for(reg int k=1;k<lim;k<<=1)
		for(reg int i=0;i<lim;i+=(k<<1))
			for(reg int j=i;j<i+k;++j){
				A[j]=add(A[j],A[j+k]);
				A[j+k]=add(A[j],add(mo-A[j+k],mo-A[j+k]));
				A[j]=typ^1?1ll*A[j]*inv2%mo:A[j];
				A[j+k]=typ^1?1ll*A[j+k]*inv2%mo:A[j+k];
			}
}
int a[MAXN],b[MAXN],m,lim,bit[MAXN],F[20][MAXN],G[20][MAXN],pw[MAXN],ans[20][MAXN],sum;
signed main(){
	read(m);lim=(1<<m);pw[0]=1;
	for(int i=1;i<=m;i++)pw[i]=add(pw[i-1],pw[i-1]);
	for(int i=1;i<lim;i++)bit[i]=bit[i^(i&-i)]+1;
	for(int i=0;i<lim;i++)read(a[i]),F[bit[i]][i]=1ll*pw[bit[i]]*a[i]%mo;
	for(int i=0;i<lim;i++)read(b[i]),G[bit[i]][i]=b[i];
	for(int i=0;i<=m;i++)FWT(F[i],lim,1),FWT(G[i],lim,1);
	for(int i=0;i<=m;i++)
		for(int j=0;j<=m-i;j++)
			for(int k=0;k<lim;k++)
				ans[i][k]=(1ll*ans[i][k]+1ll*F[j][k]*G[i+j][k])%mo;
	for(int i=0;i<=m;i++)FWT(ans[i],lim,-1);int now=1;
	for(int i=0;i<lim;i++)sum=(1ll*sum+1ll*ans[bit[i]][i]*now)%mo,now=1526ll*now%mo;
	printf("%d\n",sum);
	return 0;
}

谢谢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值