HDU 6057 Kanade's convolution FWT+数学 好题

http://acm.hdu.edu.cn/showproblem.php?pid=6057
在这里插入图片描述
在这里插入图片描述
题目大意:
在这里插入图片描述
思路:好题,当然也是难题,我们来慢慢分析。考虑对原式子进行变形,设 p = i   x o r   j , q = i   o r   j p=i\ xor\ j,q=i\ or\ j p=i xor j,q=i or j,由位运算关系不难得到 i   a n d   j = q − p = q   x o r   p i\ and\ j=q-p=q\ xor\ p i and j=qp=q xor p,最后一步转化还有一个隐含条件: q   a n d   p = p q\ and\ p=p q and p=p(其实就是为了保证 p p p q q q的子集)。那么原式就可以写成:
C [ k ] = ∑ p   x o r   q = k A [ p ] ∗ B [ q ]   ,   q   a n d   p = p C[k]=\sum_{p\ xor\ q=k}A[p]*B[q]\ ,\ q\ and\ p=p C[k]=p xor q=kA[p]B[q] , q and p=p
其实这个转换是不等价的,为什么?我们仔细想一下,满足条件的 ( p , q ) (p,q) (p,q)所对应的 ( i , j ) (i,j) (i,j)的对数只有一对吗?其实不然,设 b i t s ( i ) = i bits(i)=i bits(i)=i的二进制表示中 1 1 1的个数, i [ p o s ] i[pos] i[pos]表示 i i i的二进制表示的第 p o s pos pos位的值,那么对于任意一对满足条件的 ( i , j ) (i,j) (i,j)来说, i [ p o s ] = 0 & & j [ p o s ] = 1 i[pos]=0\&\&j[pos]=1 i[pos]=0&&j[pos]=1或者 i [ p o s ] = 1 & & j [ p o s ] = 0 i[pos]=1\&\&j[pos]=0 i[pos]=1&&j[pos]=0,对于 p 、 q p、q pq的值其实没有影响,对于以上条件的成立也没有影响。聪明的同学可能到这就明白了, ( i , j ) (i,j) (i,j) ( p , q ) (p,q) (p,q)并不是一一对应的,其实有 2 b i t s ( p ) 2^{bits(p)} 2bits(p) ( i , j ) (i,j) (i,j)对应着同一个 ( p , q ) (p,q) (p,q),所以我们上面那个式子应该写成:
C [ k ] = ∑ p   x o r   q = k A [ p ] ∗ 2 b i t s ( p ) ∗ B [ q ]   ,   q   a n d   p = p C[k]=\sum_{p\ xor\ q=k}A[p]*2^{bits(p)}*B[q]\ ,\ q\ and\ p=p C[k]=p xor q=kA[p]2bits(p)B[q] , q and p=p
你说上面跟着个 2 b i t s ( p ) 2^{bits(p)} 2bits(p)多难看啊,我们把它换一下:
A ′ [ p ] = A [ p ] ∗ 2 b i t s ( p ) A'[p]=A[p]*2^{bits(p)} A[p]=A[p]2bits(p)
C [ k ] = ∑ p   x o r   q = k A ′ [ p ] ∗ B [ q ]   ,   q   a n d   p = p C[k]=\sum_{p\ xor\ q=k}A'[p]*B[q]\ ,\ q\ and\ p=p C[k]=p xor q=kA[p]B[q] , q and p=p
现在考虑对 q   a n d   p = p q\ and\ p=p q and p=p进行转化,其实它就等价于 q − p = k q-p=k qp=k,等价于 b i t s ( q ) − b i t s ( p ) = b i t s ( k ) bits(q)-bits(p)=bits(k) bits(q)bits(p)=bits(k)。那么我们可以把它们当成不同的维度来考虑,这样枚举 b i t s ( p ) 、 b i t s ( q ) bits(p)、bits(q) bits(p)bits(q)就可以计算出 b i t s ( k ) bits(k) bits(k),那么上式就只剩下:
C [ k ] = ∑ p   x o r   q = k A ′ [ p ] ∗ B [ q ] C[k]=\sum_{p\ xor\ q=k}A'[p]*B[q] C[k]=p xor q=kA[p]B[q]
F W T FWT FWT就完事了。
时间复杂度 O ( m 2 ∗ 2 m ) O(m^2*2^{m}) O(m22m),还是可以过的。

#include<bits/stdc++.h>
using namespace std;        //FWT
typedef long long ll;

const int maxn=1<<20;
const int MOD=998244353;

int n,limit;
int bits[maxn];
ll a[20][maxn],b[20][maxn],c[20][maxn];

inline void FWT_xor(ll *A,int inv)
{
    ll x,y;
    ll inv2=MOD+1>>1; //因为MOD是一个质数 所以(MOD+1)/2 就是2模MOD的乘法逆元
    for(int mid=1;mid<limit;mid<<=1)
    {
        for(int i=0;i<limit;i+=mid<<1)
        {
            for(int j=0;j<mid;j++)
            {
                x=A[i+j],y=A[mid+i+j];
                A[i+j]=(x+y)%MOD;
                A[mid+i+j]=(x-y+MOD)%MOD;
                if(inv==-1)
                {
                    A[i+j]=A[i+j]*inv2%MOD; // 2模MOD的乘法逆元 如果题目不是在模意义下的 除2即可
                    A[mid+i+j]=A[mid+i+j]*inv2%MOD;
                }
            }
        }
    }
}

int main()
{
    scanf("%d",&n);
    limit=1<<n;
    for(int i=0;i<limit;i++)
        bits[i]=__builtin_popcount(i);
    for(int i=0;i<limit;i++)
    {
        scanf("%lld",&a[bits[i]][i]);
        a[bits[i]][i]*=1<<bits[i];
        a[bits[i]][i]%=MOD;
    }
    for(int i=0;i<limit;i++)
        scanf("%lld",&b[bits[i]][i]);
    for(int i=0;i<=n;i++)
        FWT_xor(a[i],1),FWT_xor(b[i],1);
    for(int p=0;p<=n;p++)
        for(int q=p;q<=n;q++)
            for(int k=0;k<limit;k++)
                c[q-p][k]=(c[q-p][k]+a[p][k]*b[q][k])%MOD;
    for(int i=0;i<=n;i++)
        FWT_xor(c[i],-1);
    ll ans=0,base=1;
    for(int i=0;i<limit;i++)
    {
        ans=(ans+c[bits[i]][i]*base)%MOD;
        base*=1526;
        if(base>=MOD)
            base%=MOD;
    }
    printf("%lld\n",ans);
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值