Nastia and a Beautiful Matrix
题解
首先这个构造出来的矩阵是明显具有单调性的,所以我们可以考虑先二分矩阵的大小。
那么如何判断一个长度为
m
i
d
mid
mid的矩阵是否合法呢?
很明显,我有2个必要条件,
- n × n n\times n n×n的矩阵由于四个方格中最多有三个格子被利用,所以总个数不能超过 n 2 − ⌊ n 2 ⌋ 2 n^2-\left \lfloor \frac{n}{2}\right \rfloor^2 n2−⌊2n⌋2个。
- 任何单种颜色的个数也不能超过 n × ⌈ n 2 ⌉ n\times \left\lceil\frac{n}{2}\right\rceil n×⌈2n⌉,否则就一定会有对角线会出现相同颜色。
于是,我们可以很合理的得到一个形如下图的涂色方法。
很明显,如果我们将奇数列全部涂满,偶数列的偶数行全部涂满必定是一种可行最多涂色的方法。
我们可以将格子分作上图红黄蓝与灰三类,其中灰代表不涂色。
上图只有黄和蓝是相冲突的,不能涂作同一种颜色。
我们可以将所有的颜色按数量排序,先涂蓝再涂红,最后涂黄。
由于最多的颜色数量不超过
n
×
⌈
n
2
⌉
n\times \left\lceil\frac{n}{2}\right\rceil
n×⌈2n⌉,所以不可能三种颜色全部涂到,也就不会有冲突了。
时间复杂度 O ( m + k log k ) O\left(m+k\log\,k\right) O(m+klogk)。
源码
#include<bits/stdc++.h>
using namespace std;
#define MAXN 100005
#define lowbit(x) (x&-x)
#define reg register
#define mp make_pair
#define fir first
#define sec second
typedef long long LL;
typedef unsigned long long uLL;
const int INF=0x3f3f3f3f;
const LL mo=1e9+7;
const LL inv2=5e8+4;
const double Pi=acos(-1.0);
typedef pair<int,int> pii;
const double PI=acos(-1.0);
template<typename _T>
_T Fabs(_T x){return x<0?-x:x;}
template<typename _T>
void read(_T &x){
_T f=1;x=0;char s=getchar();
while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}
while('0'<=s&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}
x*=f;
}
template<typename _T>
void print(_T x){if(x>9)print(x/10);putchar(x%10+'0');}
int k,m,t,b[1005][1005];
struct ming{int val,id;bool friend operator < (const ming &x,const ming &y){return x.val>y.val;}}a[MAXN];
inline bool check(int mid){
if(1ll*mid*mid-1ll*(mid>>1LL)*(mid>>1LL)<m)return 0;
return a[1].val<=1ll*mid*(mid+1LL>>1LL);
}
signed main(){
read(t);
while(t--){
read(m);read(k);for(int i=1;i<=k;i++)read(a[i].val),a[i].id=i;sort(a+1,a+k+1);int l=1,r=m,id=1;
while(l<r){int mid=l+r>>1;if(check(mid))r=mid;else l=mid+1;}printf("%d\n",l);
for(reg int i=1;i<=l;i+=2)for(reg int j=2;j<=l;j+=2){while(id<=k&&!a[id].val)id++;if(id>k)break;if(id<=k)b[i][j]=a[id].id,a[id].val--;}
for(reg int i=1;i<=l;i+=2)for(reg int j=1;j<=l;j+=2){while(id<=k&&!a[id].val)id++;if(id>k)break;if(id<=k)b[i][j]=a[id].id,a[id].val--;}
for(reg int i=2;i<=l;i+=2)for(reg int j=1;j<=l;j+=2){while(id<=k&&!a[id].val)id++;if(id>k)break;if(id<=k)b[i][j]=a[id].id,a[id].val--;}
for(reg int i=1;i<=l;i++,puts(""))for(reg int j=1;j<=l;j++)print(b[i][j]),putchar(' '),b[i][j]=0;
}
return 0;
}