Buy One, Get One Free
题解
首先如果它没有要求只能选择严格小于的作为礼物,我想我们应该很容易想到一种排序后各一个选一个的贪心策略。
但很显然,在严格小于的要求下我们并不能这样去做,考虑反悔贪心。
我们可以先将价格相同的礼物都缩成一类,一类一类的处理下来,很明显,同一类中的礼物不能建立起
B
u
y
−
G
e
t
Buy-Get
Buy−Get 关系。
如果我们之前
B
u
y
Buy
Buy的礼物比
G
e
t
Get
Get的礼物多,那很明显,我们现在可以直接
G
e
t
Get
Get礼物。
如果我们现在不能
G
e
t
Get
Get了,那这个时候我们就要考虑是将这些礼物买下,还是将前面
G
e
t
Get
Get的一部分礼物买下,再去
G
e
t
Get
Get这些礼物。
这明显是能够通过反悔贪心来解决的。
很明显,反悔一次是会增加
2
2
2个名额,用以
G
e
t
Get
Get礼物的,即会让我们当前处理的礼物数
+
2
+2
+2,而
B
u
y
Buy
Buy礼物同样还会带给我们一个
G
e
t
Get
Get名额,使我们的处理礼物数
+
2
+2
+2。
如果我们当前的最小反悔代价
x
⩽
2
v
a
l
i
x\leqslant 2val_{i}
x⩽2vali,相当于我们反悔后的处理这两个同样的礼物代价更低,我们就反悔,将这两个加入答案,很明显,再使得这两个反悔的代价为
2
v
a
l
i
−
x
2val_{i}-x
2vali−x,而反悔掉前面一个后我们同样会可以重新反悔
x
x
x,所以我们要将这两个都加入堆。
我们反悔的代价是每次找最小的一个,这可以通过最小堆来进行维护。
不过上面的反悔是当我们有两个相同的值时,但我们可能遇到当前值只剩下一个数的情况,这种情况下,如果我们的
x
⩽
v
a
l
i
x\leqslant val_{i}
x⩽vali,我们同样可以通过反悔
G
e
t
Get
Get下这一个,这还会给我们加一个
G
e
t
Get
Get的名额,这仍然是最优的方法。
所以我们要分上面这两种情况处理。
直接那个优先队列维护的反悔代价即可。
时间复杂度 O ( n log n ) O\left(n\log\,n\right) O(nlogn)。
源码
#include<bits/stdc++.h>
using namespace std;
#define MAXN 500005
#define lowbit(x) (x&-x)
#define reg register
#define pb push_back
#define mkpr make_pair
#define fir first
#define sec second
typedef long long LL;
typedef unsigned long long uLL;
const int INF=0x3f3f3f3f;
const int mo=998244353;
const int inv2=499122177;
const int jzm=2333;
const int zero=10000;
const int orG=3,invG=332748118;
const double Pi=acos(-1.0);
const double eps=1e-5;
typedef pair<LL,int> pii;
template<typename _T>
_T Fabs(_T x){return x<0?-x:x;}
template<typename _T>
void read(_T &x){
_T f=1;x=0;char s=getchar();
while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}
while('0'<=s&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}
x*=f;
}
template<typename _T>
void print(_T x){if(x<0){x=(~x)+1;putchar('-');}if(x>9)print(x/10);putchar(x%10+'0');}
LL gcd(LL a,LL b){return !b?a:gcd(b,a%b);}
int add(int x,int y,int p){return x+y<p?x+y:x+y-p;}
void Add(int &x,int y,int p){x=add(x,y,p);}
int qkpow(int a,int s,int p){int t=1;while(s){if(s&1LL)t=1ll*a*t%p;a=1ll*a*a%p;s>>=1LL;}return t;}
int n,a[MAXN],b[MAXN],cnt[MAXN],tot,now,sta[MAXN],stak,sum;LL ans;
priority_queue<int,vector<int>,greater<int> >q;
signed main(){
read(n);for(int i=1;i<=n;i++)read(a[i]),b[++tot]=a[i],ans+=a[i];
sort(b+1,b+tot+1);tot=unique(b+1,b+tot+1)-b-1;
for(int i=1;i<=n;i++)a[i]=lower_bound(b+1,b+tot+1,a[i])-b,cnt[a[i]]++;
for(int i=tot;i>0;i--){
now=sum-2*q.size();sum+=cnt[i];
while(now&&cnt[i])now--,cnt[i]--,sta[++stak]=b[i];
while(!q.empty()&&cnt[i]>0)
if(q.top()>=b[i]){
if((cnt[i]^1)&&b[i]+b[i]>=q.top())
sta[++stak]=b[i]+b[i]-q.top();
sta[++stak]=q.top();
q.pop();cnt[i]-=2;
}
else{
sta[++stak]=b[i];
if(cnt[i]^1)sta[++stak]=b[i];
q.pop();cnt[i]-=2;
}
while(cnt[i]>0)cnt[i]--;
while(stak)q.push(sta[stak--]);
}
while(!q.empty())ans-=q.top(),q.pop();
printf("%lld\n",ans);
return 0;
}