欢乐豆
题目概述
题解
首先可以发现一个性质,我们到任意一个未被更改所影响的节点上,不可能经过超过一条更改的边。
显然,如果我中途需要经过一条未被修改的边,那么我一定可以在从这个点的出发点直接走这条边到达这个点,如果到其它点再走,那么我所需要走的边权肯定会更大。
于是,到任意一个未被更改所影响的节点上,未被更改的节点直接走
a
i
a_{i}
ai的边就行了。而一个被更改所影响了的节点,则需要可以沿着最短路走到某个节点,再从那个节点走
a
i
a_{i}
ai的边。
剩下的更改过的节点走到更改过的节点的最短路,与我们上面的目的是相仿的,所以事实上我们真正的难点就是求这个最短路。
如果你直接用
F
l
o
y
e
d
Floyed
Floyed找最短路的话,是
O
(
m
3
)
O\left(m^3\right)
O(m3)的,只有
36
p
t
s
36pts
36pts,最多再加上一个可以直接
d
i
j
dij
dij的特殊性质
B
B
B。
但实际上我们可以用线段树来模拟
d
i
j
dij
dij。
我们对于每个点出发都做一次
d
i
j
dij
dij,更新到每个节点的最短路是用该节点去更新未被更新的节点的最短路。
我们发现,从一个点出发,只有到与它之间连边是被更改过的情况边权是独特的,否则边权都是
a
i
a_{i}
ai。
所以我们可以对于这些独特的边单点修改,对于其它点区间修改。
还有跳出去到未被更改的点再跳回来的情况,这种情况可以全局修改。
即使其它点的区间不一定是连续的,但由于我们的独特点只有
O
(
m
)
O(m)
O(m)个,所以我们区间修改的区间也是
O
(
m
)
O(m)
O(m)级别的。
所以做一次
d
i
j
dij
dij实际上是
O
(
m
log
m
)
O\left(m\log\,m\right)
O(mlogm)的。啊啊啊!!!
直接对于每个点都做一次
d
i
j
dij
dij就行了。
时间复杂度 O ( n + m 2 log m ) O\left(n+m^2\log\,m\right) O(n+m2logm)。
源码
#include<bits/stdc++.h>
using namespace std;
#define MAXN 100005
#define MAXM 6005
#define lowbit(x) (x&-x)
#define reg register
#define pb push_back
#define mkpr make_pair
#define fir first
#define sec second
#define lson (rt<<1)
#define rson (rt<<1|1)
typedef long long LL;
typedef unsigned long long uLL;
const int INF=0x3f3f3f3f;
const int mo=5e5+9;
const int inv2=499122177;
const double jzm=0.997;
const int zero=15;
const int lim=2500000;
const int orG=3,invG=332748118;
const double Pi=acos(-1.0);
const double eps=1e-5;
typedef pair<int,int> pii;
template<typename _T>
_T Fabs(_T x){return x<0?-x:x;}
template<typename _T>
void read(_T &x){
_T f=1;x=0;char s=getchar();
while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}
while('0'<=s&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}
x*=f;
}
template<typename _T>
void print(_T x){if(x<0){x=(~x)+1;putchar('-');}if(x>9)print(x/10);putchar(x%10+'0');}
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
int add(int x,int y,int p){return x+y<p?x+y:x+y-p;}
void Add(int &x,int y,int p){x=add(x,y,p);}
int qkpow(int a,int s,int p){int t=1;while(s){if(s&1)t=1ll*a*t%p;a=1ll*a*a%p;s>>=1;}return t;}
int n,m,a[MAXN],id[MAXN],ord[MAXM],idx;
int mna,val[MAXM],dis[MAXN];
bool key[MAXN];LL ans;
vector<pii>G[MAXM];
struct ming{int u,v,w;}s[MAXM];
bool cmp(int x,int y){return val[x]<val[y];}
class SegmentTree{
private:
int minn[MAXM<<2],lzy[MAXM<<2],maxx[MAXM<<2];bool cov[MAXM<<2];
void pushup(int rt){
minn[rt]=INF;cov[rt]=cov[lson]&cov[rson];maxx[rt]=0;
if(!cov[lson])minn[rt]=min(minn[lson],minn[rt]),maxx[rt]=max(maxx[lson],maxx[rt]);
if(!cov[rson])minn[rt]=min(minn[rson],minn[rt]),maxx[rt]=max(maxx[rson],maxx[rt]);
}
void pushdown(int rt){
if(lzy[rt]<INF-1){
if(!cov[lson])maxx[lson]=lzy[rt],minn[lson]=min(lzy[rt],minn[lson]),lzy[lson]=min(lzy[lson],lzy[rt]);
if(!cov[rson])maxx[rson]=lzy[rt],minn[rson]=min(lzy[rt],minn[rson]),lzy[rson]=min(lzy[rson],lzy[rt]);
lzy[rt]=INF;
}
}
public:
void build(int rt,int l,int r){
maxx[rt]=minn[rt]=lzy[rt]=INF;cov[rt]=0;
if(l==r)return ;int mid=l+r>>1;
build(lson,l,mid);build(rson,mid+1,r);
}
void modify(int rt,int l,int r,int al,int ar,int aw){
if(l>r||l>ar||r<al||al>ar||cov[rt])return ;
if(al<=l&&r<=ar){minn[rt]=min(aw,minn[rt]);maxx[rt]=aw;lzy[rt]=min(lzy[rt],aw);return ;}
int mid=l+r>>1;pushdown(rt);
if(al<=mid)modify(lson,l,mid,al,ar,aw);
if(ar>mid)modify(rson,mid+1,r,al,ar,aw);
pushup(rt);
}
pii query(int rt,int l,int r){
if(l==r)return mkpr(minn[rt],l);
int mid=l+r>>1;pushdown(rt);
if(!cov[lson]&&minn[lson]<=minn[rson])return query(lson,l,mid);
return query(rson,mid+1,r);
}
void update(int rt,int l,int r,int ai){
if(l>r||l>ai||r<ai)return ;
if(l==r){minn[rt]=maxx[rt]=INF;cov[rt]=1;return ;}
int mid=l+r>>1;pushdown(rt);
if(ai<=mid)update(lson,l,mid,ai);
if(ai>mid)update(rson,mid+1,r,ai);
pushup(rt);
}
int queryMax(){return maxx[1];}
}T;
signed main(){
freopen("happybean.in","r",stdin);
freopen("happybean.out","w",stdout);
read(n);read(m);mna=INF;
for(int i=1;i<=n;i++)read(a[i]);
for(int i=1;i<=m;i++){
read(s[i].u),read(s[i].v);read(s[i].w);
key[s[i].u]=key[s[i].v]=1;
}
for(int i=1;i<=n;i++)if(key[i])ord[++idx]=i,id[i]=idx;
for(int i=1;i<=m;i++)G[id[s[i].u]].pb(mkpr(id[s[i].v],s[i].w));
for(int i=1;i<=idx;i++)sort(G[i].begin(),G[i].end());
for(int i=1;i<=n;i++)if(!key[i])mna=min(mna,a[i]);
for(int i=1;i<=n;i++){
if(!key[i]){ans+=1ll*a[i]*(n-1);continue;}
T.build(1,1,idx);T.modify(1,1,idx,id[i],id[i],0);int minn=INF;
for(int j=1;j<=idx;j++){
pii t=T.query(1,1,idx);int u=t.sec;
int siz=G[u].size(),las=0;dis[u]=t.fir;
if(dis[u]<T.queryMax()){
for(int k=0;k<siz;k++){
int v=G[u][k].fir,w=G[u][k].sec;
T.modify(1,1,idx,las+1,v-1,dis[u]+a[ord[u]]);
T.modify(1,1,idx,v,v,dis[u]+w);las=v;
}
T.modify(1,1,idx,las+1,idx,dis[u]+a[ord[u]]);
T.modify(1,1,idx,1,idx,dis[u]+a[ord[u]]+mna);
}
T.update(1,1,idx,u);
ans+=1ll*dis[u];minn=min(minn,dis[u]+a[ord[u]]);
}
ans+=1ll*minn*(n-idx);
}
printf("%lld\n",ans);
return 0;
}