[UER #6]逃跑

逃跑

题解

首先根据期望的线性性,我们可以将方差的期望转化成平方的期望减去期望的平方。
E ( ( x − E ( x ) ) 2 ) = E ( x 2 − 2 x E ( x ) + E 2 ( x ) ) = E ( x 2 ) − 2 E ( x ) E ( x ) + E 2 ( x ) = E ( x 2 ) − E 2 ( x ) E((x-E(x))^2)=E(x^2-2xE(x)+E^2(x))=E(x^2)-2E(x)E(x)+E^2(x)=E(x^2)-E^2(x) E((xE(x))2)=E(x22xE(x)+E2(x))=E(x2)2E(x)E(x)+E2(x)=E(x2)E2(x)所以我们的目的是算出我们的 E ( x ) E(x) E(x) E ( x 2 ) E(x^2) E(x2),这两者可以通过 d p dp dp求解。

首先考虑如何求解 E ( x ) E(x) E(x)
我们可以先算出可以走到一个节点的方案数,记走 i i i步走到节点 ( x , y ) (x,y) (x,y) g ( i , x , y ) g(i,x,y) g(i,x,y)种方案,显然可以递推求出。
但这些方案并不能保证我们是第一次走到节点 ( x , y ) (x,y) (x,y),也就是说这样的话一个节点有可能被统计多次,不妨记录 f ( i , x , y ) f(i,x,y) f(i,x,y)表示在第 i i i步第一次走到节点 ( x , y ) (x,y) (x,y)的方案数。
对于 f f f我们可以通过容斥求出,
f ( i , x , y ) = g ( i , x , y ) − ∑ j = 0 i − 1 f ( j , x , y ) g ( i − j , 0 , 0 ) f(i,x,y)=g(i,x,y)-\sum_{j=0}^{i-1}f(j,x,y)g(i-j,0,0) f(i,x,y)=g(i,x,y)j=0i1f(j,x,y)g(ij,0,0)需要减去先前已经到过该点的方案。
求出 f ( i , x , y ) f(i,x,y) f(i,x,y),之后的方案无论怎么走都显然已经到过 ( x , y ) (x,y) (x,y)了。
实际上该 f ( i , x , y ) f(i,x,y) f(i,x,y)对我们答案的贡献为 ( w 1 + w 2 + w 3 + w 4 ) n − i f ( i , x , y ) (w_1+w_2+w_3+w_4)^{n-i}f(i,x,y) (w1+w2+w3+w4

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值