[NOI Online 2022]如何正确地排序

如何正确地排序

题解

首先关注这个 f ( i , j ) = min ⁡ k = 1 m ( a k , i + a k , j ) + max ⁡ k = 1 m ( a k , i + a k , j ) f(i,j)=\min_{k=1}^{m}(a_{k,i}+a_{k,j})+\max_{k=1}^m(a_{k,i}+a_{k,j}) f(i,j)=mink=1m(ak,i+ak,j)+maxk=1m(ak,i+ak,j),显然我们可以将 min ⁡ \min min max ⁡ \max max分开计算。
我们要算的是二元对 ( i , j ) (i,j) (i,j)的最小值,这东西怎么搞。
不如就对于每个 k k k,求出 ∑ i = 1 n ∑ j = 1 n [ min ⁡ k ′ ≠ k ( a k ′ , i + a k ′ , j ) ⩾ a k , i + a k , j ] ( a k , i + a k , j ) \sum_{i=1}^{n}\sum_{j=1}^{n}[\min_{k'\not = k}(a_{k',i}+a_{k',j})\geqslant a_{k,i}+a_{k,j}](a_{k,i}+a_{k,j}) i=1nj=1n[mink=k(ak,i+ak,j)ak,i+ak,j](ak,i+ak

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值