[硫化铂]未来

未来

题目概述

在这里插入图片描述
在这里插入图片描述

题解

首先,我们考虑用某种线性变化转化一下我们的这个变化。
我们不妨定义 r , b , g r,b,g r,b,g在模三的剩余系下分别为 0 , 1 , 2 0,1,2 0,1,2,那么如果我们每次转移是让 x ′ = 2 ( x + y ) % 3 x'=2(x+y)\% 3 x=2(x+y)%3的话,显然就满足我们每次操作的条件了。
如果我们连续对一个数进行 m m m次操作的话,我们发现,我们对 a i a_i ai进行第 j j j次操作时,是需要考虑它下一个数 a i + 1 a_{i+1} ai+1进行 j − 1 j-1 j1次操作的答案的。
我们定义 f ( i , j ) f(i,j) f(i,j)表示对 a i a_i ai进行 j j j次操作得到的答案,显然有转移式
f ( i , j ) = 2 ( f ( i , j − 1 ) + f ( i + 1 , j − 1 ) ) % 3 f(i,j)=2(f(i,j-1)+f(i+1,j-1))\% 3 f(i,j)=2(f(i,j1)+f(i+1,j1))%3发现这个长得很像杨辉三角的形式,那么我们可以知道将整个函数展开后可以得到, f ( i , m ) = 2 m ∑ j = 0 m ( m j ) a ( i + j ) % n f(i,m)=2^m\sum_{j=0}^{m}\binom{m}{j}a_{(i+j)\% n} f(i,m)=2mj=0m(jm)a(i+j)%n
也就是说 a j a_j aj a i a_i ai贡献的系数为 ∑ k = 0 m [ k ≡ i − j m o d    n ] ( m k ) \sum_{k=0}^m[k\equiv i-j \mod n]\binom{m}{k} k=0m[kijmodn](km)
显然,这东西只与 i − j i-j ij的大小有关,记 f i = ∑ k = 0 ⌊ m − i n ⌋ ( m n k + i ) f_i=\sum_{k=0}^{\lfloor\frac{m-i}{n}\rfloor}\binom{m}{nk+i} fi=k=0nmi(nk+im),我们需要算的显然只有这东西。

如果暴力算的话肯定承受不住我们 m ⩽ 1 0 18 m\leqslant 10^{18} m1018的范围,但我们的模数是 3 3 3呀,考虑Lucas定理,这样我们可以将 m m m转化成三进制数后进行计算,每个位上的组合数乘起来。
我们定义 d p i , j dp_{i,j} dpi,j表示考虑到第 i i i位,我们已经枚举过的位置对于模 n n n的余数为 j j j的组合数之和,记 m m m三进制的第 i i i位为 a i a_i ai,显然有转移式,
d p i , j = ∑ k = 0 a i ( a i k ) d p i − 1 , ( j − k ⋅ 3 i ) % n dp_{i,j}=\sum_{k=0}^{a_i} \binom{a_i}{k}dp_{i-1,(j-k\cdot 3^i)\%n} dpi,j=k=0ai(kai)dpi1,(jk3i)%n显然,就是直接枚举我们这一位填的数为多少。
按常理来说还要保证我们填出来的数不能大于 m m m,但是我们填的数如果有一位比 m m m这位大,贡献就为 0 0 0了,所以有贡献的数总和必定不超过 m m m,没必要考虑舔出来大于 m m m的情况。
最后我们的 d p l e n , i dp_{len,i} dplen,i就是我们的 f i f_i fi
有了 f i f_i fi,我们对于原字符串随便做一个多项式乘法就能得到我们的答案串了。

时间复杂度 O ( n ( log ⁡ 3 m + log ⁡ n ) ) O\left(n(\log_3 m+\log n)\right) O(n(log3m+logn))

源码

#include<bits/stdc++.h>
using namespace std;
#define MAXN 500005
#define MAXM 2000005
#define lowbit(x) (x&-x)
#define reg register
#define pb push_back
#define mkpr make_pair
#define fir first
#define sec second
#define lson (rt<<1)
#define rson (rt<<1|1)
typedef long long LL;
typedef unsigned long long uLL; 
typedef long double ld;
typedef pair<int,int> pii;
const int INF=0x3f3f3f3f;
const int mo=998244353;
const int mod=1e5+3;
const int inv2=499122177;
const int jzm=2333;
const int zero=2000;
const int n1=2000;
const int orG=3,ivG=332748118;
const long double Pi=acos(-1.0);
const double eps=1e-12;
template<typename _T>
_T Fabs(_T x){return x<0?-x:x;}
template<typename _T>
void read(_T &x){
	_T f=1;x=0;char s=getchar();
	while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}
	while('0'<=s&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}
	x*=f;
}
template<typename _T>
void print(_T x){if(x<0){x=(~x)+1;putchar('-');}if(x>9)print(x/10);putchar(x%10+'0');}
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
int add(int x,int y,int p){return x+y<p?x+y:x+y-p;}
void Add(int &x,int y,int p){x=add(x,y,p);}
int qkpow(int a,int s,int p){int t=1;while(s){if(s&1)t=1ll*t*a%p;a=1ll*a*a%p;s>>=1;}return t;}
int n,a[MAXN],sta[MAXN],stak,pw3[MAXN],dp[45][MAXN],C[5][5];
int F[MAXM],G[MAXM],rev[MAXM];char str[MAXN];LL m;
void NTT(int *A,const int lim,const int typ){
	for(int i=0;i<lim;i++)if(rev[i]<i)swap(A[i],A[rev[i]]);
	for(int mid=1;mid<lim;mid<<=1){
		const int W=qkpow(typ^1?ivG:orG,(mo-1)/(mid<<1),mo);
		for(int i=mid<<1,j=0;j<lim;j+=i)
			for(int k=j,Wn=1;k<j+mid;k++,Wn=1ll*W*Wn%mo){
				const int x=A[k],y=1ll*Wn*A[k+mid]%mo;
				A[k]=add(x,y,mo);A[k+mid]=add(x,mo-y,mo);
			}
	}
	if(typ^-1)return ;int tmp=qkpow(lim,mo-2,mo);
	for(int i=0;i<lim;i++)A[i]=1ll*tmp*A[i]%mo;
}
signed main(){
	freopen("future.in","r",stdin);
	freopen("future.out","w",stdout);
	for(int i=0;i<4;i++){
		C[i][0]=C[i][i]=1;
		for(int j=1;j<i;j++)
			C[i][j]=(C[i-1][j-1]+C[i-1][j])%3;
	}
	read(n);read(m);scanf("\n%s",str+1);int tmp=qkpow(2,m%2,3);
	for(int i=1;i<=n;i++)a[i]=(str[i]=='r')?0:((str[i]=='g')?1:2);
	while(m)sta[++stak]=m%3,m/=3;int now=0,las=1;dp[now][0]=1;
	pw3[0]=1;for(int i=1;i<=stak;i++)pw3[i]=3ll*pw3[i-1]%n;
	for(int i=stak;i>0;i--){
		swap(now,las);
		for(int j=0;j<n;j++)if(dp[las][j]){
			for(int k=0;k<=sta[i];k++)
				(dp[now][(j+k*pw3[i-1])%n]+=C[sta[i]][k]*dp[las][j])%=3;
			dp[las][j]=0;		
		} 
	}
	int lim=1,len=0;while(lim<(n<<1))lim<<=1,len++;
	for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<len-1);
	for(int i=1;i<=n;i++)F[i]=a[i];
	for(int i=0;i<n;i++)G[n-i]=dp[now][i];
	NTT(F,lim,1);NTT(G,lim,1);for(int i=0;i<lim;i++)F[i]=1ll*F[i]*G[i]%mo;NTT(F,lim,-1);
	for(int i=n;i<lim;i++)F[i%n]+=F[i];
	for(int i=0;i<n;i++)F[i]=1ll*tmp*F[i]%3;
	for(int i=1;i<=n;i++)putchar(!F[i%n]?'r':(F[i%n]==1?'g':'b'));
	puts("");
	return 0;
}

谢谢!!!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值