问题描述
任何一个正整数都可以用2的幂次方表示。例如:
137=27+23+20
同时约定方次用括号来表示,即ab 可表示为a(b)。
由此可知,137可表示为:
2(7)+2(3)+2(0)
进一步:7= 22+2+20 (21用2表示)
3=2+20
所以最后137可表示为:
2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:
1315=210 +28 +25 +2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
输入包含一个正整数N(N<=20000),为要求分解的整数。
输出格式
程序输出包含一行字符串,为符合约定的n的0,2表示(在表示中不能有空格)
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
void div2(int x)
{
int a[15],b[15],n=0;
int temp=x;
if(x==1)
cout<<"2(0)";
else if(x==2)
cout<<"2";
else
{
int i=0;
for(;x!=0;i++)
{
a[i]=x%2;
x=x/2;
}
for(int j=0;j<i;j++)
{
if(a[j]==1)
b[n++]=j;
}
}
for(int i=0;i<n;i++)
{
if(b[i]==0)
cout<<"2(0)";
else if(b[i]==1)
{
if(temp%2!=0) cout<<"+2"; //根据调试添加针对奇偶数不同的输出方式
else cout<<"2+";
}
else
{
if(temp%2!=0) //根据调试添加针对奇偶数不同的输出方式
{
cout<<"+2(";
div2(b[i]);
cout<<")";
}
else
{
cout<<"2(";
div2(b[i]);
cout<<")";
}
}
}
}
int main()
{
int N;
cin>>N;
div2(N);
return 0;
}