PAT 乙级 真题 1001 害死人不偿命的(3n+1)猜想 (15 分)(Python)

以下代码均为 Python3
 

题目:

卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
 

输入格式:

每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式:

输出从 n 计算到 1 需要的步数。

输入样例:

3

输出样例:

5

 
 

关键点:

判断奇偶数

答案:

n =int(input())

i=0
while n!=1:      #当n不为1时,进行循环;直到n为1时则停止输出总步数
    if n%2==0:   #如果是偶数
        n=n/2
    else:         #如果是奇数
        n=(3*n+1)/2
    i+=1

print(i)

 
如果想要查看每次循环的计算,可以加上两行代码:

n =int(input())

i=0
while n!=1:      #当n不为1时,进行循环;直到n为1时则停止输出总步数
    if n%2==0:   #如果是偶数
        print(i+1,"次:","%d/2=%d"%(n,n/2))
        n=n/2
    else:         #是奇数
        print(i+1,"次:","(3*%d+1)/2=%d" % (n,(3*n+1)/2))
        n=(3*n+1)/2
    i+=1

print(i)

 
输出如下:

7
1: (3*7+1)/2=11
2: (3*11+1)/2=17
3: (3*17+1)/2=26
4: 26/2=13
5: (3*13+1)/2=20
6: 20/2=10
7: 10/2=5
8: (3*5+1)/2=8
9: 8/2=4
10: 4/2=2
11: 2/2=1
11

 

小贴士:

1、input(),调用后会暂停程序,等待用户输入。返回值是字符串类型。如果如题想要得到一个整数,可以用int()函数
 
2、int(),只保留整数位,不四舍五入(如int(7.9)=7,int(7.1)=7)
 
3、print(),打印输出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值