以下代码均为 Python3
题目:
卡拉兹(Callatz)猜想:
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出格式:
输出从 n 计算到 1 需要的步数。
输入样例:
3
输出样例:
5
关键点:
判断奇偶数
答案:
n =int(input())
i=0
while n!=1: #当n不为1时,进行循环;直到n为1时则停止输出总步数
if n%2==0: #如果是偶数
n=n/2
else: #如果是奇数
n=(3*n+1)/2
i+=1
print(i)
如果想要查看每次循环的计算,可以加上两行代码:
n =int(input())
i=0
while n!=1: #当n不为1时,进行循环;直到n为1时则停止输出总步数
if n%2==0: #如果是偶数
print(i+1,"次:","%d/2=%d"%(n,n/2))
n=n/2
else: #是奇数
print(i+1,"次:","(3*%d+1)/2=%d" % (n,(3*n+1)/2))
n=(3*n+1)/2
i+=1
print(i)
输出如下:
7
1 次: (3*7+1)/2=11
2 次: (3*11+1)/2=17
3 次: (3*17+1)/2=26
4 次: 26/2=13
5 次: (3*13+1)/2=20
6 次: 20/2=10
7 次: 10/2=5
8 次: (3*5+1)/2=8
9 次: 8/2=4
10 次: 4/2=2
11 次: 2/2=1
11
小贴士:
1、input(),调用后会暂停程序,等待用户输入。返回值是字符串类型。如果如题想要得到一个整数,可以用int()函数
2、int(),只保留整数位,不四舍五入(如int(7.9)=7,int(7.1)=7)
3、print(),打印输出