POJ1860

题目大意是:有n种货币,以及m个货币兑换点,输入N,m以及主人公拥有的货币类型和该类型货币的数量,接下来m行输入一行两个兑换点可以兑换的货币类型以及彼此兑换的要扣除的手续费和兑换率,由货币A到货币B以及由货币B到货币A彼此之间的手续费和兑换率不同。

问经过一定转换后所拥有的货币是否比原来多

即是否存在正环

两种解法:Bellman-ford和spfa

#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<set>
#define INF 0x3f3f3f3f
using namespace std;
int n,m,s;
double mon;
struct edge
{
    int u,v;
    double rate,com;
}e[305];
double d[105];
bool bellman_ford()
{
    for(int i=1;i<=n;i++)d[i]=0;//初始化为0,因为要找的是正环
    d[s]=mon;
    for(int i=1;i<n;i++)
    {
        for(int j=0;j<2*m;j++)
        {
            if(d[e[j].v]<(d[e[j].u]-e[j].com)*e[j].rate)d[e[j].v]=(d[e[j].u]-e[j].com)*e[j].rate;
        }
    }
//重新找一次,若能发现还有更大的,即存在正环。
    for(int j=0;j<2*m;j++)
    {
      if(d[e[j].v]<(d[e[j].u]-e[j].com)*e[j].rate)return 1;
    }
    return 0;
}
int main()
{
    cin>>n>>m>>s>>mon;
    for(int i=0;i<2*m;i+=2)
    {
        cin>>e[i].u>>e[i].v>>e[i].rate>>e[i].com>>e[i+1].rate>>e[i+1].com;
        e[i+1].u=e[i].v;
        e[i+1].v=e[i].u;
    }
    if(bellman_ford())cout<<"YES"<<endl;
    else cout<<"NO"<<endl;
    /*for(int i=1;i<=n;i++)
        cout<<d[i]<<' ';
    cout<<endl;
    for(int i=0;i<2*m;i++)
    {
        cout<<e[i].u<<' '<<e[i].v<<endl;
    }
    */
    return 0;
}

#include <iostream>
#include <cstring>
#include <string>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <stack>
using namespace std;
int head[405],n,m,s;
double d[405];
double vi;
struct edge
{
    int u,v;
    double com,rate;
    int next;
}e[410];
bool vis[410];
bool spfa()
{
   for(int i=0;i<=n;i++)
   {
       vis[i]=0;
       d[i]=0;
   }
   vis[s]=1;
   d[s]=vi;
   queue<int>q;
   q.push(s);
   while(!q.empty())
   {
       int temp=q.front();
       q.pop();
       vis[temp]=0;
       for(int i=head[temp];i!=-1;i=e[i].next)
       {
           if(d[e[i].v]<((d[temp]-e[i].com)*e[i].rate))
          {
              d[e[i].v]=(d[temp]-e[i].com)*e[i].rate;
           if(!vis[e[i].v])
           {
               q.push(e[i].v);
               vis[e[i].v]=1;
           }
       }
   }
   if(d[s]>vi)return 1;
   }
   return 0;
}
int main()
{
    cin>>n>>m>>s>>vi;
    memset(head,-1,sizeof(head));
    for(int i=1;i<=2*m;i+=2)
    {
        cin>>e[i].u>>e[i].v>>e[i].rate>>e[i].com>>e[i+1].rate>>e[i+1].com;
        e[i+1].u=e[i].v;
        e[i+1].v=e[i].u;
        e[i].next=head[e[i].u];
        head[e[i].u]=i;
        e[i+1].next=head[e[i+1].u];
        head[e[i+1].u]=i+1;
    }
    if(spfa())cout<<"YES"<<endl;
    else cout<<"NO"<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值