数学
TaskaNon
这个作者很懒,什么都没留下…
展开
-
ZOJ2562
关于反素数的一道题(这里分析的很好http://blog.csdn.net/ACdreamers/article/details/25049767) 首先是反素数的概念:对任意的正整数,都有,那么称为反素数。 性质:1一个反素数的所有质因子必然是从2开始的连续若干个质数 2如果,那么必有 本题的意思:求出中约数个数最多的这个数 #include #include #includ原创 2015-08-07 22:30:16 · 556 阅读 · 0 评论 -
POJ2909
大意是给出某个数,问这个数能有多少种由两个素数相加的不同的组合 1筛出素数表; 2用素数表预处理每个数的素数组合数; 3直接输出; #include #include #include #include #include #include #include #include //#pragma comment(linker,"/STACK:102400000原创 2015-08-07 22:29:30 · 479 阅读 · 0 评论 -
POJ3292
水题,给出一个数n,求在1到n中,刚好是由两个模4余1的素数相乘得到的数有多少个 #include #include #include #include #include #include #include #include using namespace std; const int size=1000001; int H_number[size+1];原创 2015-11-08 23:16:01 · 445 阅读 · 0 评论 -
poj1845
这道题涉及到的知识: (1) 整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式。 A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 其中pi均为素数 (2) 约数和公式: 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 有A的原创 2015-11-08 23:36:45 · 322 阅读 · 0 评论 -
poj2115
关于扩展欧几里德定理 模线性方程 ax=b (mod n)可转换为ax-b=qn;即gcd(a,n)*(ax/gcd(a,n)-qn/gcd(a,n))=b; 所以方程有解的充要条件为 gcd(a,n) | b ,即 b% gcd(a,n)==0 令d=gcd(a,n) 有该方程的 最小整数解为 x = e (mod n/d) 其中e = [x0 mod(n/d)原创 2015-11-10 00:15:10 · 472 阅读 · 0 评论 -
poj2635
#include #include #include #include #include using namespace std; #define ran 1000100 int prime[ran+1]; bool p[ran+1]; char k[110]; int kt[10000]; int l; void getprime() { int c原创 2015-11-03 00:04:57 · 609 阅读 · 0 评论