蒟蒻复习之—–前缀和和差分

本文详细介绍了前缀和的概念,包括一维前缀和、二维前缀和及其在模k情况下的优化。同时,讨论了差分操作,包括一维差分、二维差分以及树上的点差分和边差分,强调它们在处理区间加减操作和树结构问题中的应用。
摘要由CSDN通过智能技术生成

#前缀和#
##1.一维前缀和##
对于数组A[],前缀和SUM[i]表示的就是A[1]+A[2]+…+A[i]。

int init() {
	for(int i = 1; i <= n; i++) sum[i] = sum[i-1] + a[i];
}
int get(int l, int r) {
	return sum[r] - sum[l-1];
}

##2.二维前缀和##
对于二维数组,前缀和SUM[i][k]表示的是所有A[i’][k’](1< = i’<=i,i <= k’<=k)的和。
这里写图片描述

int init() {
	for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= m; j++) {
            sum[i][j] = sum[i][j-1] + sum[i-1][j] - sum[i-1][j-1] + a[i][j];
        }
    }
}
int get(int x1, int y1, int x2, int y2) {
    return sum[x1][y1] - sum[x1][y2 - 1] - sum[x2 - 1][y1] + sum[x2 - 1][y2 - 1];
}

##3.%k时的优化##
(p - q)% k= 0 ==> p % k = q % k
统计q % k 和 p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值