Untitled
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 570 Accepted Submission(s): 291
Problem Description
There is an integer
a
and
n
integers
b1,…,bn
. After selecting some numbers from
b1,…,bn
in any order, say
c1,…,cr
, we want to make sure that
a mod c1 mod c2 mod… mod cr=0
(i.e.,
a
will become the remainder divided by
ci
each time, and at the end, we want
a
to become
0
). Please determine the minimum value of
r
. If the goal cannot be achieved, print
−1
instead.
The first line contains one integer
T≤5
, which represents the number of testcases.
For each testcase, there are two lines:
1. The first line contains two integers n and a ( 1≤n≤20,1≤a≤106 ).
2. The second line contains n integers b1,…,bn ( ∀1≤i≤n,1≤bi≤106 ).
For each testcase, there are two lines:
1. The first line contains two integers n and a ( 1≤n≤20,1≤a≤106 ).
2. The second line contains n integers b1,…,bn ( ∀1≤i≤n,1≤bi≤106 ).
Print
T
answers in
T
lines.
Sample Input
2 2 9 2 7 2 9 6 7
2 -1
BestCoder Round #49 ($)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5339
题目大意:重排列bi,问a对重排列的数不断取模最快能为0的取模次数
题目分析:其实是水题,首先对数字小的取完余后再对数字大的取余等于没取,所以先对大数字取余,从大到小排序,因为n很小,DFS随意搜,也可以用状态压缩做,把每个数字选或不选的状态二进制压缩
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5339
题目大意:重排列bi,问a对重排列的数不断取模最快能为0的取模次数
题目分析:其实是水题,首先对数字小的取完余后再对数字大的取余等于没取,所以先对大数字取余,从大到小排序,因为n很小,DFS随意搜,也可以用状态压缩做,把每个数字选或不选的状态二进制压缩
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const MAX = 1 << 22;
int const INF = 0x3fffffff;
int b[25], sta[MAX];
int lowbit(int x)
{
return x & (-x);
}
bool cmp(int a, int b)
{
return a > b;
}
int main()
{
int T;
scanf("%d", &T);
while(T --)
{
memset(sta, 0, sizeof(sta));
int n, a;
scanf("%d %d", &n, &a);
for(int i = 1; i <= n; i++)
scanf("%d", &b[i]);
sort(b + 1, b + n + 1, cmp);
for(int i = 1; i <= n; i++)
sta[1 << (i - 1)] = b[i];
int cnt, ans = INF;
for(int i = 1; i < (1 << n); i++)
{
int tmp = a;
cnt = 0;
for(int j = i; j > 0; j -= lowbit(j))
{
tmp %= sta[lowbit(j)];
cnt ++;
}
if(tmp == 0)
ans = min(ans, cnt);
}
if(ans == INF)
printf("-1\n");
else
printf("%d\n", ans);
}
}