POJ 1387 线段树

#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 100000;
struct Event
{
	int x, y1, y2;
	int add;
};
struct IntervalTreeNode
{
	int count, total;
};
int n;
struct Rectangle
{
	int x1, y1, x2, y2;
};
Rectangle rect[maxn + 1];
Event evt[maxn * 2 + 1];
IntervalTreeNode tree[(maxn + 10) << 2];
int id[maxn * 2];
bool cmp(const Event &a, const Event &b)
{
	return a.x < b.x;
}
void up(int i, int lb, int rb)
{
	tree[i].total = tree[i << 1].total + tree[(i << 1) + 1].total;
	if (tree[i].count) tree[i].total = id[rb] - id[lb];
}
void ins(int i, int lb, int rb, int a, int b, int k)
{
	if (a == lb && b == rb)
	{
		tree[i].count += k;
		up(i, lb, rb);
		return;
	}
	int med = (lb + rb) >> 1;
	if (b <= med) ins(i << 1, lb, med, a, b, k);
	else if (a >= med) ins((i << 1) + 1, med, rb, a, b, k);
	else
	{
		ins(i << 1, lb, med, a, med, k);
		ins((i << 1) + 1, med, rb, med, b, k);
	}
	up(i, lb, rb);
}
long long area()
{
	for (int i = 0; i < n; i++)
	{
		id[i] = rect[i].y1;
		id[i + n] = rect[i].y2;
	}
	sort(id, id + 2 * n);
	for (int i = 0; i < 2 * n; i++)
	{
		rect[i].y1 = lower_bound(id, id + 2 * n, rect[i].y1) - id;
		rect[i].y2 = lower_bound(id, id + 2 * n, rect[i].y2) - id;
	}
	for (int i = 0; i < n; i++)
	{
		evt[i].add = 1;
		evt[i + n].add = -1;
		evt[i].x = rect[i].x1;
		evt[i + n].x = rect[i].x2;
		evt[i].y1 = evt[i + n].y1 = rect[i].y1;
		evt[i].y2 = evt[i + n].y2 = rect[i].y2;
	}
	sort(evt, evt + n * 2, cmp);
	long long ans = 0;
	for (int i = 0; i < 2 * n; i++)
	{
		if (i > 0 && evt[i].x > evt[i - 1].x)
			ans += (long long)(evt[i].x - evt[i - 1].x) * tree[1].total;
		ins(1, 0, 2 * n - 1, evt[i].y1, evt[i].y2, evt[i].add);
	}
	return ans;
}
int a, b, c, d;
int init()
{
	int cnt = 0;
	while (scanf("%d%d%d%d", &a, &b, &c, &d) == 4 && a + b + c + d != -4)
	{
		rect[cnt].x1 = a, rect[cnt].y1 = b;
		rect[cnt].x2 = c, rect[cnt].y2 = d;
		cnt++;
	}
	return n = cnt;
}
int main(int argc, char const *argv[])
{
	while (init())
	{
		printf("%lld\n", area());
	}
	return 0;
}


线段树经典题,取出矩形的纵向边从左往右扫描,每处理一条扫描线时,下一条扫描线与当前扫描线的距离乘上当前已覆盖纵向边的长度是一个部分面积,将这些面积累加起来就是n个矩形面积的并,用线段树维护扫描覆盖纵向边长度,离散化点坐标可以节约空间,貌似不离散也能过。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值