sklearn.naive_bayes.MultinomialNB()函数解析(最清晰的解释)

欢迎关注WX公众号:【程序员管小亮】

sklearn.naive_bayes.MultinomialNB()函数全称是先验为多项式分布的朴素贝叶斯。

除了MultinomialNB之外,还有GaussianNB就是先验为高斯分布的朴素贝叶斯,BernoulliNB就是先验为伯努利分布的朴素贝叶斯。

class sklearn.naive_bayes.MultinomialNB(alpha=1.0, 
										fit_prior=True, 
										class_prior=None)

MultinomialNB假设特征的先验概率为多项式分布,即如下式:
在这里插入图片描述
其中, P ( X j = X j l ∣ Y = C k ) P(X_j = X_{jl} | Y = C_k) P(Xj=XjlY=Ck) 是第 k k k 个类别的第 j j j 维特征的第 l l l 个取值条件概率。 m k m_k mk 是训练集中输出为第 k k k 类的样本个数。 λ λ λ 为一个大于0的常数,尝尝取值为1,即拉普拉斯平滑,也可以取其他值。

参数

  • alpha:浮点型可选参数,默认为1.0,其实就是添加拉普拉斯平滑,即为上述公式中的λ ,如果这个参数设置为0,就是不添加平滑;
  • fit_prior:布尔型可选参数,默认为True。布尔参数fit_prior表示是否要考虑先验概率,如果是false,则所有的样本类别输出都有相同的类别先验概率。否则可以自己用第三个参数class_prior输入先验概率,或者不输入第三个参数class_prior,让MultinomialNB自己从训练集样本来计算先验概率,此时的先验概率为 P ( Y = C k ) = m k / m P(Y=C_k)=m_k/m P(Y=Ck)=mk/m。其中m为训练集样本总数量, m k m_k mk为输出为第k类别的训练集样本数。
  • class_prior:可选参数,默认为None。
fit_priorclass_prior最终先验概率
False填或不填没有意义 P ( Y = C k ) = 1 / k P(Y = C_k) = 1 / k P(Y=Ck)=1/k
True不填 P ( Y = C k ) = m k / m P(Y = C_k) = m_k / m P(Y=Ck)=mk/m
True P ( Y = C k ) = c l a s s _ p r i o r P(Y = C_k) = class\_prior P(Y=Ck)=class_prior

还有其他参数:
在这里插入图片描述

例子:

>>> import numpy as np
>>> X = np.random.randint(5, size=(6, 100))
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB()
>>> clf.fit(X, y)
MultinomialNB()
>>> print(clf.predict(X[2:3]))
[3]

朴素贝叶斯算法实现理论和代码在博客:《机器学习实战》学习笔记(四):基于概率论的分类方法 - 朴素贝叶斯

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是管小亮

一口吃掉你的打赏,嗝~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值