【CS231n】斯坦福大学李飞飞视觉识别课程笔记

CS231n 专栏收录该内容
21 篇文章 8 订阅

最近开了一个新坑——【CS231n】斯坦福大学李飞飞视觉识别课程,准备认真学习并记录自己的学习历程。

【CS231n】斯坦福大学李飞飞视觉识别课程笔记

由官方授权的CS231n课程笔记翻译知乎专栏——智能单元,比较详细地翻译了课程笔记,我这里就是参考和总结。

在这里插入图片描述

课程笔记









学习安排

每周具体时间划分为4个部分:

  • 1部分安排在周一到周二
  • 2部分安排在周四到周五
  • 3部分安排在周日
  • 4部分作业是任何有空的时间自行完成,可以落后于学习进度
  • 周三和周六休息 _

Week 1

  1. 了解计算机视觉综述,历史背景和课程大纲
  • slides: lecture01
  • 观看视频 p1, p2 和 p3
  1. 学习数据驱动的方法, 理解 KNN 算法,初步学习线性分类器
  1. 掌握本门课 python 编程的基本功
  1. 作业
  • (热身)写一个矩阵的类,实现矩阵乘法,只能使用 python 的类(class)和列表(list)
  • 完成assignment1 中的 knn.ipynb

Week2

  1. 深入理解线性分类器的原理
  1. 学习损失函数以及梯度下降的相关知识
  1. 掌握矩阵求导的基本方法
  • 根据资料,学习矩阵求导的基本技巧,看多少内容取决于个人需要
  1. 作业
  • 简述 KNN 和线性分类器的优劣, 打卡上传知知识圈
  • 完成assignment1 中 svm.ipynb

Week3

  1. 学习掌握深度学习的基石: 反向传播算法
  1. 理解神经网络的结构和原理
  • slides: lecture04
  • 观看视频 p10
  1. 深入理解反向传播算法
  1. 作业
  • 完成 assignment1 中的 softmax.ipynb
  • 完成 assignment1 中的 two_layer_net.ipynb

Week4

  1. 掌握 PyTorch 中的基本操作
  1. 了解 kaggle 比赛的流程,并完成第一次的成绩提交
  1. 学习深度学习的系统项目模板

  2. 作业

  • 完成 assignment1 中的 features.ipynb
  • 修改房价预测的代码,在知识圈上提交 kaggle 的成绩

Week5

  1. 理解 CNN 中的卷积
  • slides: lecture05
  • 观看视频 p11, p12
  1. 理解 CNN 中的 pooling
  1. 完成 CNN 的第一个应用练习,人脸关键点检测
  1. 作业
  • 思考一下卷积神经网络对比传统神经网络的优势在哪里?为什么更适合处理图像问题,知识圈打卡上传
  • 完成 assignment2 中 FullyConnectedNets.ipynb

Week6

  1. 理解激活函数,权重初始化,batchnorm 对网络训练的影响
  1. 深入理解 BatchNormalization
  1. 总结回顾和理解深度学习中 normalize 的技巧
  1. 作业
  • 完成 assignment2 中 BatchNormalization.ipynb
  • 完成 assignment2 中 Dropout.ipynb

Week7

  1. 理解更 fancy 的优化方法,更多的 normalize 以及正则化和迁移学习对网络训练的影响
  1. 了解第二次的 kaggle 比赛 cifar10 分类
  1. 全面的理解深度学习中的优化算法
  1. 作业
  • 完成 assignment2 中 ConvolutionNetworks.ipynb
  • 修改 cifar10 的网络结构,在知识圈上提交 kaggle 成绩

Week8

  1. 了解主流深度学习框架之间的区别与联系
  • slides: lecture08
  • 观看视频 p19
  1. 了解经典的网络结构
  • slides: lecture09
  • 观看视频 p20
  1. 理解卷积神经网络的最新进展
  1. 作业
  • 完成 assignment2 中的 PyTorch.ipynb
  • 学习模板代码, 尝试更大的网络结构完成 kaggle 比赛种子类型识别的比赛,在知识圈上提交 kaggle 成绩

Week9

  1. 掌握 RNN 和 LSTM 的基本知识
  • slides: lecture10
  • 观看视频 p21
  1. 了解语言模型和 image caption 的基本方法
  • slides: lecture10
  • 观看视频 p22 和 p23
  1. 更深入的理解循环神经网络的内部原理
  1. 作业

Week10

  1. 学习计算机视觉中的语义分割问题
  • slides: lecture11
  • 观看视频 p24
  1. 学习计算机视觉中的目标检测问题
  • slides: lecture11
  • 观看视频 p25 和 p26
  1. 了解目标检测中的常见算法
  1. 作业

Week11

  1. 理解卷积背后的原理
  • slides: lecture13
  • 观看视频 p27
  1. 学习 deep dream 和 风格迁移等有趣应用
  • slides: lecture13
  • 观看视频 p28
  1. 了解无监督学习和生成模型
  • slides: lecture12
  • 观看视频 p29
  1. 作业

Week12

  1. 掌握自动编码器和生成对抗网络的基本原理
  • slides: lecture12
  • 观看视频 p30 和 p31
  1. 了解强化学习的基本概念
  • slides: lecture14
  • 观看视频 p32
  1. 学习强化学习中的 q learning 和 actor-critic 算法
  • slides: lecture14
  • 观看视频 p33
  1. 作业
  • 完成 assignment3 中的 GANs-PyTorch.ipynb
  • 完成 assignment3 中的 StyleTransfer-PyTorch.ipynb
©️2021 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值