【计算机科学的数学基础】证明


数学中关于证明的定义:
从基本的 公理出发,进行一系列的 逻辑演绎,最后得到 命题的过程就是对命题的数学证明。

A mathematical proof of a proposition is a chain of logical deductions leading to the proposition from a base set of axioms.
Mathematics for Computer Science, E. L., F. T., 2012

命题(Proposition)

定义:命题是一个非真即假的陈述。

A proposition is a statement that is either true or false.
Mathematics for Computer Science, E. L., F. T., 2012

下面来看几个很著名的命题。

欧拉猜想(Euler’s Conjecture)

当a, b, c, d都为正整数时,等式 $ a4+b4+c4=d4 $ 没有解。

这是1769年,欧拉(Euler)提出来的猜想,但是218年后被证明是错误的,因为当 a = 95800 , b = 217519 , c = 414560 , d = 422481 a=95800, b=217519, c=414560, d=422481 a=95800,b=217519,c=414560,d=422481时,上述等式是可以成立的。

欧拉猜想的命题可以用数学符号来表示1
∀ a , b , c , d ∈ Z + . a 4 + b 4 + c 4 ≠ d 4 \forall a, b, c, d \in \mathbb{Z^+}. a^4+b^4+c^4 \neq d^4 a,b,c,dZ+.a4+b4+c4=d4

四色定理(Four Color Theorem)

每张地图只用4种颜色来填充就可以保证相邻2的区域颜色不相同

这个定理在20世纪90年代被证明是正确的。

费马最后定理(Fermat’s Last Theorem)

对于整数 n > 2 n>2 n>2,不存在正整数 x , y , z x, y, z x,y,z,使得$ x^{n} + y^{n} = z^n$ 成立。

这个定理也在20世纪90年代被证明是正确的。

哥德巴赫猜想(Goldbach’s Conjecture)

每个大于2的整数都是两个质数的和。

哥德巴赫猜想最早可以追溯到1742。目前小于等于 1 0 1 6 10^16 1016的整数都被证明满足这个命题。但至今也没有人能完全证明其正确性。

谓词(Predicates)

谓词是一种命题,其正确性取决于一个或多个变量的值。

大部分命题都是用谓词的形式定义的。比如: n 是一个完全平方数 n是一个完全平方数 n是一个完全平方数
这个命题的正确性就取决于变量 n n n的值。谓词可以用类似于函数的表达式来表示3
P ( n ) : : = “ n 是一个完全平方数” P(n)::=“n是一个完全平方数” P(n)::=n是一个完全平方数
所以, P ( 4 ) P(4) P(4)是正确的, P ( 5 ) P(5) P(5)是错误的。
这种表达式和函数很像,但两者是不同的。如果 P P P是一个谓词,那么根据变量 n n n的值, P ( n ) P(n) P(n)非真即假。如果 p p p是一个函数,比如 p ( n ) = n 2 + 1 p(n)=n^2+1 p(n)=n2+1,那么 p ( n ) p(n) p(n)没有真假,它代表一个数值。

公理化方法(The Axiomatic Method)

标准的数学推理方法是由欧几里得(Euclid)发明的。从一些基于直接经验的不可否认的假设出发,从而证明其他命题。而这些不可否认的假设被称作公理(axiom)。而证明(proof)就是从公理或者之前已经被证明的命题出发的一系列逻辑推论。
对于已被证明的命题有几个相关的术语:

  • 定理(theorems):正确性以被证明的重要命题
  • 辅助定理,或引理(lemma):对于要证明的命题来说是一个有用的前提条件的命题
  • 推论(corollary):由定理经过一些逻辑演绎得到的明细

但是这些定义并不准确,有时候辅助定理可能实际上比定理更加重要。

逻辑推理规则

如果P成立,且P能推导到Q,则Q成立;
用公式表示为: P , P ⇒ Q Q \frac{P, P \Rightarrow Q}{Q} QP,PQ

如果上面部分,即前件(antecedent),成立,则下面的部分,即结论或后件(conclusion或consequent)也成立。
其他推理规则4
P ⇒ Q , Q ⇒ R P ⇒ R \frac{P\Rightarrow Q, Q \Rightarrow R}{P \Rightarrow R} PRPQ,QR

¬ P ⇒ ¬ Q Q ⇒ P \frac{\neg P \Rightarrow \neg Q}{Q \Rightarrow P} QP¬P¬Q

注意上面这个规则的后件如果变换顺序是不成立的。即 ¬ P ⇒ ¬ Q P ⇒ Q \frac{\neg P \Rightarrow \neg Q}{P \Rightarrow Q} PQ¬P¬Q是不成立的。

证明的模式

许多证明过程都是有模版的。

直接证明(Direct Proof)-蕴涵(Implication)

蕴涵是指“如果 P P P,那么 Q Q Q”的命题形式,即 P ⇒ Q P \Rightarrow Q PQ

例如,一元二次方程(Quadratic Formula):

  • 如果 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0,且 a ≠ 0 a \neq 0 a=0,那么 x = ( − b ± b 2 − 4 a c ) / 2 a x=(-b \pm \sqrt{b^2-4ac})/2a x=(b±b24ac )/2a
  • 如果 0 ≤ x ≤ 2 0 \leq x \leq 2 0x2,那么 − x 3 + 4 x + 1 > 0 -x^3+4x+1 > 0 x3+4x+1>0

所以证明可以从假设 P P P成立开始,然后推理出 Q Q Q;这也成为直接证明(direct proof)

反命题

P ⇒ Q P \Rightarrow Q PQ等价于 ¬ Q ⇒ ¬ P \neg Q \Rightarrow \neg P ¬Q¬P,所以证明后者就相当于证明了前者。

证明“当且仅当”(If and Only If)

这种命题大家肯定不陌生,比如:当且仅当两个三角形的两条对应边及它们的夹角都相等时,两个三角形全等。这种命题可以简写成: P ⇔ Q P \Leftrightarrow Q PQ

方法一

因为 P ⇔ Q P \Leftrightarrow Q PQ等价于 P ⇒ Q P \Rightarrow Q PQ P ⇐ Q P \Leftarrow Q PQ同时成立,所以可以分别证明这两个命题。

方法二

通过证明 P ⇔ R P \Leftrightarrow R PR以及KaTeX parse error: Undefined control sequence: \Rightleftarrow at position 3: R \̲R̲i̲g̲h̲t̲l̲e̲f̲t̲a̲r̲r̲o̲w̲ ̲Q来证明 P ⇔ Q P \Leftrightarrow Q PQ

例如:
标准差 σ = ( x 1 − μ ) 2 + ( x 2 − μ ) 2 + . . . + ( x n − μ ) 2 n \sigma = \sqrt{\frac{(x_1-\mu)^2+(x_2-\mu)^2+...+(x_n-\mu)^2}{n}} σ=n(x1μ)2+(x2μ)2+...+(xnμ)2
其中, μ \mu μ为平均数,即 μ : : = x 1 + x 2 + . . . + x n n \mu::=\frac{x_1+x_2+...+x_n}{n} μ::=nx1+x2+...+xn

证明:当且仅当数列 x 1 , . . . , x n x_1, ..., x_n x1,...,xn中的所有数都等于平均值时,数列的标准差才为0。

( x 1 − μ ) 2 + ( x 2 − μ ) 2 + . . . + ( x n − μ ) 2 n = 0 ⇔ \sqrt{\frac{(x_1-\mu)^2+(x_2-\mu)^2+...+(x_n-\mu)^2}{n}}=0 \qquad \Leftrightarrow n(x1μ)2+(x2μ)2+...+(xnμ)2 =0 ( x 1 − μ ) 2 + ( x 2 − μ ) 2 + . . . + ( x n − μ ) 2 = 0 ⇔ (x_1-\mu)^2+(x_2-\mu)^2+...+(x_n-\mu)^2=0 \qquad \Leftrightarrow (x1μ)2+(x2μ)2+...+(xnμ)2=0 ( x i − μ ) 2 = 0 ⇔ (x_i-\mu)^2=0 \qquad \Leftrightarrow (xiμ)2=0 x i = μ x_i=\mu xi=μ

枚举证明

通过枚举命题中包含的所有情况来证明命题。

例如

证明:每6个人中都包含3个互相认识的或者3个互相不认识的人。
设6人中的其中一人为 x x x,则有共有以下4种情况:

  • 情况1:在其余5人中,至少有3人认识 x x x
    * 情况1.1:如果这5个人都互相不认识,那么这5人中至少有3个互不相识的人,满足命题。
    * 情况1.2:如果这5个人中至少有2个人互相认识,那这2个人和 x x x就组成了3个互相认识的人,满足命题。
  • 情况2:在其余5人中,至少有3人不认识 x x x
    * 情况2.1:如果这5个人都互相认识,那至少有3个互相认识的人,满足命题。
    * 情况2.2:如果这5个人中至少有2个人互相不认识,那这2个人和 x x x就组成了3个互相不认识的人,满足命题。

间接证明或反证法(Indirect Proof)

如果一个命题的反面是错的,那么该命题就是正确的。
例如

证明: 2 \sqrt{2} 2 是无理数
假设
2 \sqrt{2} 2 是有理数
2 = n / d \sqrt{2}=n/d 2 =n/d n / d n/d n/d为最简分数
即有 2 = n 2 / d 2 2=n^2/d^2 2=n2/d2, 2 d 2 = n 2 2d^2=n^2 2d2=n2
所以 n n n为2的倍数
因此 n 2 n^2 n2为4的倍数
那么 2 d 2 2d^2 2d2也为4的倍数
所以 d 2 d^2 d2也为2的倍数
因此 d d d也为2的倍数
那么 n / d n/d n/d就不是最简分数
所以 2 \sqrt{2} 2 不可能是有理数
即证明 2 \sqrt{2} 2 是无理数**


  1. Z + \mathbb{Z^+} Z+表示“正整数集” ↩︎

  2. 相邻表示共用边界,如果只是具有相同的顶点,则不算相邻 ↩︎

  3. : : = ::= ::=表示“定义为” ↩︎

  4. ¬ \neg ¬表示“非” ↩︎

  • 15
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值