【OpenCV C++20 学习笔记】直方图计算-split, calcHist, normalize

广义直方图

直方图的横坐标除了可以是图片中的强度值,也可以是任何其他我们想要观察的特征。例如,下面的图片矩阵中包含了0-255的强度值:
图片矩阵
如果想观察每个宽度为16的强度值区间上的频数分布,我们就可以将横坐标分成下面的区间:
[ 0 , 255 ] = [ 0 , 15 ] ∪ [ 16 , 31 ] ∪ . . . . . ∪ [ 240 , 255 ] r a n g e = b i n 1 ∪ b i n 2 ∪ . . . . . ∪ b i n n = 15 [0, 255] = [0, 15] \cup [16, 31] \cup ..... \cup [240, 255] \\ range = bin_1 \cup bin_2 \cup ..... \cup bin_{n=15} [0,255]=[0,15][16,31].....[240,255]range=bin1bin2.....binn=15
这样就可以得到类似于下图的直方图:
区间直方图
直方图中的元素的定义如下:

  1. 维数(dims):即想要观察的参数的数量,比如上例中只观察灰度图中每个像素的强度值,因此dims = 1
  2. 组数(bins):每个维度中的数据被分组的数量,比如上例中分了16组区间,所以bins = 16
  3. 全距(range):被观察的数据的总区间,比如上例中range = [0, 255]

如果你相观察的参数不止一个,比如说2个,即dims = 2,那就需要画一个3维的图了。

示例

目标

  1. 导入图片
  2. 分离通道:用split函数将图片分离为R, G, B3个矩阵数据
  3. 计算直方图:用calcHist函数对分离出来的3个矩阵分别计算直方图
  4. 绘制计算结果

分离通道

split函数,其原型如下:

void cv::split(	const Mat& src,
				Mat*		mvbegin)

该函数将多通道的矩阵数组分成多个单通道的矩阵数组,其中:

  • src为要进行通道分离的原矩阵
  • mvbegin为接收分离结果的数组的指针,该数组的长度要和原矩阵的通道数相同

该函数还有以下更便利的重载版本(第2个参数不再是指针,而是多维数组):

void cv::split(	InputArray			m,
				
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值