Windows环境下安装和使用Ollama

Ollama简介

Ollama 是一个用于在本地运行大型语言模型(LLM)的开源框架。具有以下特点:

  • 简化部署:利用 Docker 容器技术简化 LLM 的部署过程,用户只需执行简单命令,即可在本地计算机上部署和管理模型,无需深入了解底层复杂性。
  • 捆绑模型组件:将模型权重、配置和数据捆绑到一个名为 Modelfile 的包中,优化设置和配置细节,包括 GPU 使用情况,方便用户管理和切换不同模型。
  • 支持多种模型:支持 Llama 2、Code Llama、Mistral、Gemma 等多种大型语言模型,并允许用户根据特定需求定制和创建自己的模型。
  • 跨平台支持:支持 macOS、Linux 平台,Windows 平台的预览版也已发布。
  • 命令行操作便捷:安装完成后,用户通过简单的命令行操作即可启动和运行大型语言模型,如执行ollama run gemma:2b可运行 Gemma 2B 模型 。
  • 资源要求明确:对不同规模的模型有明确的资源要求,如至少需要 8GB 的内存 / 显存来运行 7B 模型,16GB 运行 13B 模型,32GB 运行 34B 模型。
  • 轻量级且可扩展:代码简洁明了,运行时占用资源少,同时支持多种模型架构,可扩展以支持新的模型,还支持热加载模型文件,无需重新启动即可切换不同的模型。

以上是“豆包”AI生成的对Ollama的介绍。

Ollama并不是一个像ChatGPT或Llama这样的大语言模型(LLMs),它被称作本地模型供应者(local model provider),类似的还有Llamafile, Jan, 以及LM Studio等。Ollama是一个在本地电脑上搭建和运行大语言模型的轻量、可扩展的框架。它提供了用来创建、运行和管理模型的API,以及一个包含多个预建构模型的库,让用户可以在不同应用上使用这些模型。

注意:Ollama中的模型是预建构模型(pre-built models),跟大语言模型相比,它们没有收集数据,但可以用来搭建和训练。

安装

Ollama官网可以直接免费下载对应操作系统的安装包,但是国内下载速度很慢。也可以通过Docker下载安装。

如果需要Windows版的安装包可以私信我免费领取。

下载完成后可以直接双击安装包安装,但是这样会直接安装到C盘,且无法更改安装路径。

自定义安装路径

由于后面下载大模型会占用很多空间,所以建议自定义安装路径。
可以在Windows终端中输入以下命令来自定义安装路径:

 # .\OllamaSetup.exe为安装包文件所在路径
 # D:\Ollama为安装的目标路径
.\OllamaSetup.exe /DIR="D:\Ollama"

自定义模型储存路径

除了更改Ollama的安装路径,也建议更改通过Ollama下载的模型的储存路径:
在用户环境变量中添加一个OLLAM_MODELS环境变量来定义模型的储存位置,变量值即为指定的模型储存路径:

### Windows环境安装OllamaDeepSeek #### 安装准备 为了确保顺利安装OllamaDeepSeek,在Windows环境中需预先确认已安装Python环境以及必要的依赖库。通常情况下,建议使用虚拟环境来管理项目所需的包版本。 #### Ollama安装过程 对于Ollama安装,可以通过pip工具直接从PyPI仓库获取最新发布的稳定版软件包[^1]: ```bash pip install ollama ``` #### DeepSeek安装指南 针对DeepSeek部署,则涉及更多配置工作。首先克隆官方GitHub仓库到本地机器上,接着按照README.md中的指示逐步操作。由于涉及到模型权重下载其他资源初始化,网络连接质量可能影响初次设置效率。 #### 创建自动化批处理脚本 为了简化上述流程并实现一键式体验,可以编写如下所示Batch Script(`.bat`),它会依次执行所需命令: ```batch @echo off :: 设置变量区域 set PYTHON=python3.exe :: 如果系统默认关联了python解释器可省略此行 set VENV_NAME=myenv :: 自定义虚拟环境名称 :: 更新 pip setuptools 工具链至最新状态 %PYTHON% -m pip install --upgrade pip setuptools wheel :: 构建独立运行空间 %PYTHON% -m venv %VENV_NAME% :: 激活新创建好的venv call .\%VENV_NAME%\Scripts\activate.bat :: 开始正式安装环节 pip install ollama deepseek-client :: 假设deepseek提供了一个名为'deepseek-client'的客户端用于交互 :: 提醒用户后续手动步骤 (如适用) echo. echo === 手动操作提示 === echo * 将DeepSeek源码放置于当前目录下 'deepseek-source' echo * 进入该文件夹后依据官方说明继续... pause ``` 请注意以上代码片段仅为示范用途,实际应用前应当参照具体产品的官方文档调整参数选项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值