文章目录
Ollama简介
Ollama 是一个用于在本地运行大型语言模型(LLM)的开源框架。具有以下特点:
- 简化部署:利用 Docker 容器技术简化 LLM 的部署过程,用户只需执行简单命令,即可在本地计算机上部署和管理模型,无需深入了解底层复杂性。
- 捆绑模型组件:将模型权重、配置和数据捆绑到一个名为
Modelfile
的包中,优化设置和配置细节,包括 GPU 使用情况,方便用户管理和切换不同模型。 - 支持多种模型:支持 Llama 2、Code Llama、Mistral、Gemma 等多种大型语言模型,并允许用户根据特定需求定制和创建自己的模型。
- 跨平台支持:支持 macOS、Linux 平台,Windows 平台的预览版也已发布。
- 命令行操作便捷:安装完成后,用户通过简单的命令行操作即可启动和运行大型语言模型,如执行
ollama run gemma:2b
可运行 Gemma 2B 模型 。 - 资源要求明确:对不同规模的模型有明确的资源要求,如至少需要 8GB 的内存 / 显存来运行 7B 模型,16GB 运行 13B 模型,32GB 运行 34B 模型。
- 轻量级且可扩展:代码简洁明了,运行时占用资源少,同时支持多种模型架构,可扩展以支持新的模型,还支持热加载模型文件,无需重新启动即可切换不同的模型。
(以上是“豆包”AI生成的对Ollama的介绍。)
Ollama并不是一个像ChatGPT或Llama这样的大语言模型(LLMs),它被称作本地模型供应者(local model provider),类似的还有Llamafile, Jan, 以及LM Studio等。Ollama是一个在本地电脑上搭建和运行大语言模型的轻量、可扩展的框架。它提供了用来创建、运行和管理模型的API,以及一个包含多个预建构模型的库,让用户可以在不同应用上使用这些模型。
注意:Ollama中的模型是预建构模型(pre-built models),跟大语言模型相比,它们没有收集数据,但可以用来搭建和训练。
安装
在Ollama官网可以直接免费下载对应操作系统的安装包,但是国内下载速度很慢。也可以通过Docker下载安装。
如果需要Windows版的安装包可以私信我免费领取。
下载完成后可以直接双击安装包安装,但是这样会直接安装到C盘,且无法更改安装路径。
自定义安装路径
由于后面下载大模型会占用很多空间,所以建议自定义安装路径。
可以在Windows终端中输入以下命令来自定义安装路径:
# .\OllamaSetup.exe为安装包文件所在路径
# D:\Ollama为安装的目标路径
.\OllamaSetup.exe /DIR="D:\Ollama"
自定义模型储存路径
除了更改Ollama的安装路径,也建议更改通过Ollama下载的模型的储存路径:
在用户环境变量中添加一个OLLAM_MODELS
环境变量来定义模型的储存位置,变量值即为指定的模型储存路径: