C语言实现K-means聚类算法
K-means聚类算法是一种常用的无监督学习算法,用于将数据集中的样本划分为K个不同的簇。每个簇内的样本具有相似的特征,而不同簇之间的样本具有差异性。本文将演示如何使用C语言实现K-means聚类算法,并提供相应的源代码。
算法步骤:
- 初始化:随机选择K个样本作为初始聚类中心。
- 分配样本:对于每个样本,计算其与每个聚类中心的距离,并将其分配到距离最近的簇。
- 更新聚类中心:对于每个簇,计算其内部样本的均值,将该均值作为新的聚类中心。
- 重复步骤2和步骤3,直到聚类中心不再发生变化或达到最大迭代次数。
下面是使用C语言实现K-means算法的源代码:
#include <stdio.h>
#include <stdlib.h>
 
                       
                           
                         
                             
                             
                           
                           
                             本文介绍了如何使用C语言实现K-means聚类算法,详细讲解了算法步骤,包括初始化、分配样本、更新聚类中心,并提供了源代码实现。通过此算法,可以对数据集进行无监督学习,将样本划分为K个具有相似特征的簇。
本文介绍了如何使用C语言实现K-means聚类算法,详细讲解了算法步骤,包括初始化、分配样本、更新聚类中心,并提供了源代码实现。通过此算法,可以对数据集进行无监督学习,将样本划分为K个具有相似特征的簇。
           
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   8864
					8864
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            