基于 MATLAB BP 神经网络的财务预测
近年来,随着市场竞争的日益激烈,企业的财务风险也越来越大。因此,如何精准地预测和识别企业的财务风险已成为一个重要的问题。基于 MATLAB BP 神经网络的财务预警模型,能够有效地解决这个问题。
一、MATLAB BP神经网络模型
BP神经网络是最经典的人工神经网络之一,它是根据人类大脑神经元的计算原理设计而成的。BP神经网络具有非线性映射和自适应学习的特点,在数据建模、预测分析等方面具有优良的表现。
对于财务预测问题,我们主要采用多层前馈神经网络(MLP)作为财务预测的基本模型。MLP模型的输入层、输出层和隐含层之间均为全连接,每个神经元都是上一层神经元的加权求和再加偏置后的非线性变换。其中,输入层接受财务数据,输出层输出财务预测结果,隐含层则对输入数据进行处理和抽象。
二、财务预测模型实现
- 数据预处理
数据预处理是建立财务预测模型的重要环节。对于财务数据,我们需要进行归一化处理,将各个指标的数量级变得相近。常见的归一化方法有最大最小值法和Z-score法等。
取其中一种方式进行示例:
(1)最大最小值法
在最大最小值法中,我们将某个指标的最大值记为 max_i,最小值记为min_i,则该指标在样本中的标准化公式为:
X’