基于 MATLAB BP 神经网络的财务预测

195 篇文章 ¥49.90 ¥99.00
本文介绍了基于MATLAB的BP神经网络模型在财务预测中的应用,包括数据预处理、神经网络模型的建立、训练和预测,强调了预处理、节点数选择和激活函数的重要性,并提供了代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于 MATLAB BP 神经网络的财务预测

近年来,随着市场竞争的日益激烈,企业的财务风险也越来越大。因此,如何精准地预测和识别企业的财务风险已成为一个重要的问题。基于 MATLAB BP 神经网络的财务预警模型,能够有效地解决这个问题。

一、MATLAB BP神经网络模型

BP神经网络是最经典的人工神经网络之一,它是根据人类大脑神经元的计算原理设计而成的。BP神经网络具有非线性映射和自适应学习的特点,在数据建模、预测分析等方面具有优良的表现。

对于财务预测问题,我们主要采用多层前馈神经网络(MLP)作为财务预测的基本模型。MLP模型的输入层、输出层和隐含层之间均为全连接,每个神经元都是上一层神经元的加权求和再加偏置后的非线性变换。其中,输入层接受财务数据,输出层输出财务预测结果,隐含层则对输入数据进行处理和抽象。

二、财务预测模型实现

  1. 数据预处理

数据预处理是建立财务预测模型的重要环节。对于财务数据,我们需要进行归一化处理,将各个指标的数量级变得相近。常见的归一化方法有最大最小值法和Z-score法等。

取其中一种方式进行示例:

(1)最大最小值法

在最大最小值法中,我们将某个指标的最大值记为 max_i,最小值记为min_i,则该指标在样本中的标准化公式为:

X’

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值