BM25算法及其变量

182 篇文章 ¥59.90 ¥99.00
BM25算法是一种信息检索技术,基于向量空间模型,通过IDF、TF、文档长度和参数k1、b计算相关性得分。本文详细介绍了其原理、关键变量以及提供Python实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BM25算法及其变量

BM25(Best Match 25)是一种常用的信息检索算法,用于计算文档与查询之间的相关性得分。本文将介绍BM25算法的原理和相关变量,并提供相应的源代码实现。

  1. BM25算法原理

BM25算法是基于向量空间模型(Vector Space Model)的一种改进算法。它通过考虑文档的长度和查询的词频来计算相关性得分,以更准确地衡量文档与查询之间的匹配程度。

BM25算法的相关性得分计算公式如下:

score(D,Q) = ∑(IDF(q) * (f(q,D) * (k1 + 1)) / (f(q,D) + k1 * (1 - b + b * |D| / avgdl)))

其中,score(D,Q)表示文档D与查询Q之间的相关性得分,IDF(q)表示词项q的逆文档频率,f(q,D)表示词项q在文档D中的出现频率,k1和b是可调节的参数,avgdl表示平均文档长度。

  1. BM25算法的变量

BM25算法中的几个关键变量对相关性得分的计算有影响,下面将逐个介绍:

  • 逆文档频率(IDF):IDF衡量了词项的稀有程度,可以用来区分重要词项和常见词项。常用的计算公式是IDF(q) = log((N - d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值