【算法-数组】

数组基础

数组是存在连续内存空间的相同类型数据的集合

数组内存结构

高效的查询速度

数组内每一格占用的内存空间都是一样的, 所以我们可以通过首个数据的地址推算出其他数据的内存地址, 如果数组从 1 开始计数,那我们计算数组元素 a[i]的内存地址就会变为:

a[i]_address = base_address + (i-1)*type_size

从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令. 故而, 数组下标由0开始计算.

a[i]_address = base_address + i * data_type_size

由此, 可以通过数组的首地址与数据下标, 快速地定位到数据.

低效的插入和删除

因为数组在声明的一开始, 其长度就固定了. 当我们对其进行新增或删除时, 需要重新声明一块固定长度的内存空间, 将数据依次填入.
我们可以通过一些容器(ArrayList)对这一缺点进行优化, 利用冗余的数组空间, 尽量少地重新声明地址, 迁移数据数据.
例如: 删除时覆盖原数组数据, 重新维护数组长度. 在插入时, 将插入下标以后的数据整体后移, 再将新数据, 覆盖在原下标上.

练习

704.二分查找

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
思路:

二分查找, 顾名思义: 将数组一分为二 和 目标数作比较, 因而将范围直接缩小一半.
例如: 1-10, 从中随机一个数 6, 依次进行二分查找

5 =>< 6 ? => [ 6, 10] => 7
7 =>< 6 ? => [ 6, 6] => 6 = 6

二分查找

代码实现:
/**
* 二分查找
*/
public static int search_704(int[] nums, int target) {
   int left = 0, right = nums.length - 1;
   while (right >= left) {
       // 考虑到可能发生的整型溢出
       // 使用 left + (right - left) / 2 取mid更安全
       int mid = left + (right - left) / 2;
       if (nums[mid] == target) {
           return mid;
       } else if (nums[mid] > target) {
           right = mid - 1;
       } else {
           left = mid + 1;
       }
   }
   return -1;
}

不断重复二分, 直至下标对应的值和目标值相等, 若最终无匹配, 则返回 -1;

27.移除元素

给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。

不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。

元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

说明:

为什么返回数值是整数,但输出的答案是数组呢?
请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。
你可以想象内部操作如下:

// nums 是以“引用”方式传递的。也就是说,不对实参作任何拷贝
int len = removeElement(nums, val);

// 在函数里修改输入数组对于调用者是可见的。
// 根据你的函数返回的长度, 它会打印出数组中 该长度范围内 的所有元素。
for (int i = 0; i < len; i++) {
    print(nums[i]);
}
示例 1:
输入:nums = [3,2,2,3], val = 3
输出:2, nums = [2,2]
解释:函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。例如,函数返回的新长度为 2 ,而 nums = [2,2,3,3] 或 nums = [2,2,0,0],也会被视作正确答案。
示例 2:
输入:nums = [0,1,2,2,3,0,4,2], val = 2
输出:5, nums = [0,1,4,0,3]
解释:函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。注意这五个元素可为任意顺序。你不需要考虑数组中超出新长度后面的元素。

移除元素
移除元素

思路:

定义变量length=0 , 作为最终数组的长度, 遍历原数组, 若非目标值, 则覆盖length下标的槽位, length++, 若为目标值, 不做任何操作.

代码实现:
/**
* 移除元素
*/
public static int removeElement_27(int[] nums, int val) {
   int length = 0;
   for (int i = 0; i < nums.length; i++) {
       if (nums[i] != val) {
           nums[length++] = nums[i];
       }
   }
   return length;
}

977. 有序数组的平方

给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。

示例 1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]

有序数组的平方

思路:

采用左右指针:
左右指针对应的值进行比较, 数值大的存入数组, 对应指针向中间移动一位, 直至全部转移.

代码实现:
/**
* 双指针法
*/
public int[] sortedSquares(int[] nums) {
   int length = nums.length - 1;
   int[] res = new int[nums.length];
   int left = 0, right = length;
   // right >= left 需要等于存入最后一位
   while (right >= left) {
       if (sq(nums[right]) > sq(nums[left])) {
           res[length--] = sq(nums[right--]);
       } else {
           res[length--] = sq(nums[left++]);
       }
   }
   return res;
}
public int sq(int num) {
   return num * num;
}

209. 长度最小的子数组

给定一个含有 n 个正整数的数组和一个正整数 target 。

找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。

示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
思路:

滑动窗口
长度最小的子数组

代码实现:
/**
* 长度最小的子数组
*/
public int minSubArrayLen(int s, int[] nums) {
   int left = 0;
   int sum = 0;
   int result = Integer.MAX_VALUE;
   for (int right = 0; right < nums.length; right++) {
       sum += nums[right];
       while (sum >= s) {
           result = Math.min(result, right - left + 1);
           sum -= nums[left++];
       }
   }
   return result == Integer.MAX_VALUE ? 0 : result;
}

59.螺旋矩阵II

给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。

示例 1:

示例 1

输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]
示例 2:
输入:n = 1
输出:[[1]]

螺旋矩阵II

思路:

如图, 一个正方形分为 上,右,下,左 共4个边, 依次按顺时针将数字存入.
观察途中坐标, 则可发现规律:
上边(蓝色) 横坐标固定,纵坐标依次增长.
右边(绿色) 纵坐标固定,横坐标依次增长.
下边(紫色) 纵坐标固定,横坐标依次递减.
左边(红色) 横坐标固定,纵坐标依次递减.
又观察得知, 每向内进入一次循环,横,纵坐标都要向内进一. 即横坐标在上边+1, 下边-1.纵坐标在右边+1, 左边-1.
则, 可知n为正方形边长, round 为边长-1(方便循环内计算边界值). 设置变量loop计为循环次数, 则可知总循环次数为 n/2, 且每循环一次loop++.

上边: [ loop, i]
右边: [i, round - loop]
下边: [round - loop, round - i]
左边: [round - i][loop]
代码实现:
/**
* 螺旋矩阵2
*/
public int[][] generateMatrix(int n) {
   int[][] res = new int[n][n];
   int total = 1;
   int loop = 0;
   int round = n - 1;
   int half = n / 2;
   while (loop <= half) {
       // 上边
       for (int i = loop; i < round - loop; i++) {
           res[loop][i] = total++;
       }
       // 右边
       for (int i = loop; i < round - loop; i++) {
           res[i][round - loop] = total++;
       }
       // 下边
       for (int i = loop; i < round - loop; i++) {
           res[round - loop][round - i] = total++;
       }
       // 左边
       for (int i = loop; i < round - loop; i++) {
           res[round - i][loop] = total++;
       }
       loop++;
   }
   if (n % 2 != 0) {
       res[half][half] = total;
   }
   return res;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值