文 / Deepak Kanungo,Hedged Capital LLC 创始人兼首席执行官
来源 | TensorFlow 公众号
作为采用 “AI 先行” 战略的金融交易和咨询公司,Hedged Capital 使用概率模型在金融市场中进行交易。我们将在本文中探讨所有金融模型中固有的三类误差,并会以 Tensorflow Probability (TFP) 中的简单模型作为例子来进行说明。
注:Tensorflow Probability 链接
https://www.tensorflow.org/probability/
金融学并非物理学
亚当·斯密是公认的现代经济学之父,他对牛顿的力学和万有引力定律心存敬畏 [1]。自那时起,经济学家们一直致力于将经济学变成类似物理学的学科。他们渴望建立理论,在微观和宏观层面准确解释及预测人类的经济活动。在 20 世纪初期,欧文·费雪等经济学家的成就使这种渴望愈发强烈,并在 20 世纪后期的经济物理学运动中达到顶峰。
尽管现代金融学包含各种复杂的数学运算,但其理论严重不足,与物理学相比时,这一点尤为明显。例如,物理学能够以惊人的精确度预测月球和计算机中电子的运动。而任何物理学家均可随时在世界上的任何地方计算出这些预测结果。相比之下,市场参与者难以解释每日市场走势的原因,也无法在世界上任何地方随时预测股票价格。
这或许是因为金融学比物理学更难。与原子和钟摆不同,人类是富有情感的复杂生物,并拥有自由意志和潜在的认知偏差。他们的行为往往不一致,并会不断对他人的行为作出反应。此外,市场参与者通过利用或操纵规管他们的体系来获利。
牛顿在投资南海公司损失不菲后,感慨道:“我可以计算出天体运行的轨迹,却无法计算人类的疯狂。” 请注意,牛顿颇具投资眼光。他在英国铸币局任职近 31 年,帮助英镑在金本位制上持续了两个多世纪。
所有金融模型都是错误的?
我们使用模型来简化现实世界的复杂性,从而使我们能够关注自己感兴趣的现象有何特点。显然,地图无法捕捉到其用于建模的地形的丰富性。统计学家 George Box 有一句著名的妙语:“所有模型都是